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Abstract 

Wireless Sensor Networks (WSNs) are currently used 

in many application scenarios, including industrial 

applications and factory automation. In such scenarios, 

Time Division Multiple Access (TDMA) is typically used 

for data communication among sensor nodes. However, 

TDMA-based WSNs are particularly prone to Selective 

Jamming attack, a specific form of Denial of Service 

attack aimed at severely thwarting network reliability. In 

this paper, we present SAD-SJ, a self-adaptive and 

decentralized MAC-layer solution against selective 

jamming in TDMA-based WSNs. SAD-SJ does not need a 

central entity, requires sensor nodes to rely only on local 

information, and allows them to join and leave the 

network without hindering other nodes activity. We show 

that SAD-SJ introduces a limited overhead, in terms of 

computation, communication and energy consumption. 

 

1. Introduction 

Wireless Sensor Networks (WSNs) are currently used 

in a large number of application domains, including 

industrial applications such as factory automation, 

distributed and process control, robotic networks, real-

time monitoring of machinery health, detection of 

liquid/gas leakage, radiation check, and so on [1][2]. 

Usually, energy efficiency is the major constraint in the 

design of WSN-based systems [3], since sensor nodes 

are typically powered by batteries, with limited power 

budget. However, in industrial application scenarios, 

additional requirements need to be considered, such as 

scalability, reliability, timeliness, and security [2]. In 

such scenarios, Time Division Multiple Access (TDMA) 

is typically used for communication among sensor 

nodes. In TDMA, time is divided into a sequence of 

periodic superframes, each one composed of a fixed 

number of transmission slots that are pre-assigned to 

sensor nodes. Each sensor node is active only during its 

own slot, and sleeps for the rest of the time, thus saving 

energy. Therefore, TDMA provides guaranteed 

bandwidth, high energy efficiency, absence of collisions 

(i.e. high reliability), as well as low and predictable 

latency. 

On the other side, in TDMA-based sensor network, 

communication is particularly vulnerable to jamming 

attack, a specific form of Denial of Service (DoS) attack 

aimed at thwarting network availability [4]. Basically, 

jamming consists in interfering in network operational 

frequencies, thus corrupting packets transmitted by 

legitimate users. Jamming is considered a severe issue in 

WSN communication [5][6]. 

TDMA is prone to a particularly insidious form of 

jamming attack, namely Selective Jamming (SJ) [7][8]. 

This kind of attack aims at disturbing communication 

among sensor nodes according to specific criteria and 

objectives. For instance, an adversary could be interested 

in jamming only the transmission of certain packet types, 

or packets sent in one specific TDMA slot of the 

superframe, or transmissions from a specific sensor 

node. Also, selective jamming could severely 

compromise specific traffic flows. In comparison with 

traditional wide-band jamming, selective jamming is 

more difficult to be detected, due to the reduced 

adversary exposure. In the following, we focus on one 

kind of selective jamming attack, according to which the 

adversary aims at disrupting communication of one 

specific sensor node. 

Selective jamming attack has been thoroughly 

investigated in literature [7][8]. Typical defenses 

proposed against it are physical layer solutions, and rely 

on spread-spectrum communication among sensor nodes 

[4][5][6][7][8][9][10]. In [11], the authors propose a 

multichannel MAC protocol aimed at enhancing 

transmission efficiency while resisting wireless 

interference and jamming. Furthermore, a MAC layer 

countermeasure against selective jamming in IEEE 

802.15.4 sensor networks [12] using the GTS 

mechanism has been proposed in [13]. GTS is basically a 

form of TDMA communication where slots in different 

superframes are allocated to sensor nodes by the 

coordinator node. Hence, it is extremely vulnerable to 

selective jamming attacks. The authors have proposed a 

centralized solution where the slot allocation pattern is 

randomly changed at each superframe by the coordinator 

node. 

However, the presence of a coordinator node is the 

main limitation of centralized sensor networks. Such a 

node represents a single point of failure, i.e. if it fails, the 



network goes out of service. Also, in a dynamic 

environment, where the number of active sensor nodes 

may change over time, sensor nodes have to explicitly 

associate/de-associate with the coordinator node upon 

joining/leaving the network. This results in additional 

overhead and energy consumption on sensor nodes.   

In this paper, we propose SAD-SJ, a self-adaptive and 

decentralized solution against SJ attacks in sensor 

networks using a generic TDMA scheme for 

communication. SAD-SJ has a number of strengths. 

First, it neutralizes the selective jamming attack, forcing 

the adversary to carry out a random attack. Assuming 

there are N transmission slots in the superframe, this 

results in the attack effectiveness reduced to 1/N. In 

addition, no centralized entity is required to contrast 

selective jamming, and network nodes rely only on local 

information. Finally, SAD-SJ is self-adaptive, i.e. nodes 

can join and leave the network at any time, without 

hindering other nodes activities. We also show that a join 

operation in our scheme is always completed in, at most, 

one superframe (while leave operations are 

instantaneous). Finally, while SAD-SJ has been 

conceived for TDMA-based sensor networks, it can also 

be easily extended to slotted communication schemes 

such as solutions based on de-synchronization 

algorithms [14][15][16][17]. 

We evaluated the performance and overhead of SAD-

SJ through a network model based on a Discrete Time 

Markov Chain (DTMC). We show that the introduced 

overhead, in terms of computation, communication, and 

energy consumption, is limited.  

The rest of this paper is organized as follows. Section 

2 describes the SJ attack we refer to, while in Section 3 

we present and discuss our decentralized solution SAD-

SJ. Section 4 describes how new nodes join the network 

in the presence of SAD-SJ. In Section 5, we discuss the 

impact of our solution on network performance and 

energy consumption, and provide an analysis of the join 

overhead. Finally, in Section 6 we draw our conclusive 

remarks. 

2. SJ attack in TDMA sensor networks 

In the following, we assume that time is divided into 

periodic superframes of equal duration. A superframe T 

consists of N equally sized transmission slots, each one 

of which can be used to transmit one packet. In addition, 

we assume that there are U ≤ N sensor nodes,  and each 

sensor node u has been permanently assigned one slot su, 

in the superframe. Hence, node u can use slot su in all 

superframes. 

We consider an adversary whose objective consists in 

disrupting communications of a specific target node, 

namely u. In order to do that, she performs a form of 

selective jamming by maliciously transmitting during 

slot su assigned to sensor node u, thus interfering with its 

network activities. 

In a traditional TDMA-based sensor network, such an 

attack  is very easy to be performed. It is sufficient to 

observe a single superframe T in order to determine the 

slot su associated to sensor node u. Then, since u is 

supposed to access slot su in all superframes, it is 

possible to thwart its communications with an 

effectiveness of 100%. Besides, since the adversary jams 

one single slot per superframe, she can turn off the radio 

during all other slots. From the adversary standpoint, this 

makes such an attack also extremely efficient in terms of 

energy consumption. In addition, it exposes the 

adversary for a very limited amount of time, thus making 

it difficult to detect her presence. 

3. Our solution against SJ 

In this section, we describe SAD-SJ, our 

decentralized and self adaptive solution to the SJ attack. 

Our approach is based on the following two independent 

components. 

 

1. Random Slot Reallocation. Starting from an 

initial slot allocation pattern, at each superframe T, a 

new (pseudo) random slot allocation pattern S is 

generated. Specifically, S is computed by sensor nodes 

in an autonomous way, i.e. relying only on local 

information. In such a way, the adversary is no more 

able to jam her victim communications, unless by 

interfering with a randomly selected slot. This reduces 

the attack effectiveness to 1/N. 

2. Network Dynamicity Management. Network 

dynamicity is specifically addressed, so that sensor 

nodes can join and leave the network, at any time, 

without interfering with other nodes activities. New 

incoming nodes operate the join process in a fully 

autonomous way, i.e. without requiring any central 

entity. 

3.1. Initialization 
Before deployment, all sensor nodes are provided 

with the following information. 

 

i) A secret cryptographic symmetric key K, namely 

permutation key, whose size discourages brute 

force attack; 

ii) an unsigned integer number z0 whose maximum 

possible value is Z, i.e. z0 � �0, … , ��; 

iii) the number of slots in each superframe, namely N. 

 

In addition, each node u locally maintains an 

unsigned integer z whose maximum possible value is Z, 

i.e. z ∈  �0,...,Z�, and a bit vector vu of N elements, 

initialized as vu[i] = 0,∀  i = {0,1,…,N-1}. 

Once the initial slot allocation has been completed, 

each sensor node is associated to one TDMA slot. Then, 

each node u, associated to the i-th slot in the superframe, 

performs the following steps: 

 

(i) updates its local vector vu so that vu[i] = 1;  

(ii) initializes z as z = z0. 

 



Then, each sensor node protects itself from the SJ 

attack, according to the procedure described in Section 

3.3. In order to do that, sensor nodes rely on the slot 

permutation procedure described in Section 3.2. 

3.2. Slot permutation 

In order to produce a pseudo-random re-allocation of 

TDMA slots, each sensor node u needs to produce a 

random permutation of vu elements. Such a process is 

performed according to the following steps. Given a 

vector v of N elements, producing a pseudo-random 

permutation of its elements requires to i) generate N 

pseudo-random numbers; and ii) perform N swap 

operations, which displays O(N) computational 

complexity. 

In order to produce permutations of vector v, sensor 

nodes must rely on a secure pseudo-random number 

generator [18]. Provided that they all rely on the same 

initial seed quantity, all sensor nodes are able to generate 

the same unpredictable sequence of values over time, 

and thus remain synchronized with one another during 

the slot permutation procedure. Also, this must be 

possible while relying only on local information, i.e. 

without any information exchange. 

This can be achieved by selecting a common initial 

seed value, and then applying a one-way function to a 

well known sequence of values. Examples of suitable 

one-way functions include cryptographic hash functions, 

such as SHA-1 [19], or block ciphers, such as AES-128 

[20]. Although such ad-hoc methods have not been 

proven to be cryptographically secure, they appear 

sufficient for most applications [18]. The rand() function 

shown below provides an example of pseudo-random 

number generation based on the approach described 

above. In the following, we assume the presence of a 

secure and efficient symmetric cipher, that relies on a 

secret cryptographic key. 

int rand() { 

int random_value = encrypt(z, K); 

z = (z + 1) % (Z + 1); 

return random_value; 

} 

We recall that K is the permutation key shared by all 

sensor nodes, z is an integer value stored by all sensor 

nodes, and Z is the maximum possible value of z. 

Basically, the rand() function returns a pseudo-random 

value computed as the output of a symmetric cipher. The 

encryption process takes the permutation key K and the 

current value of z as input. Before returning the new 

random value, z is incremented by 1. Note that, upon 

reaching the maximum possible value Z, z is assigned to 

0, i.e. z = 0. Since all nodes initialize z with the same 

value z0, it follows that the i-th generated number, 

namely ri, is always the same for all nodes. 

Besides, it is worth emphasizing that, with reference 

to commercially-available WSN platforms such as Tmote 

Sky [21], the actual encryption process can be performed 

through hardware, with negligible processing overhead 

in terms of both delay and energy consumption [22]. 

Thanks to the random number generation described 

above, the actual permutation process can be performed 

by each node, according to the following permute() 

function. Its behavior is equivalent to the 

random_shuffle() function provided by the C++ Standard 

Template Library [23]. 

 
void permute(int v[]) { 

for (int i = 0; i < N; i++) 

swap(v[i], v[rand() % N]); 

} 

We recall that v is the vector stored by each node, and 

composed of N elements. The loop in the permute() 

function considers one element of v per step, and swaps 

it with a randomly chosen element of the same vector. 

As a special case, an element can be possibly swapped 

with itself. Also, it is possible that the vector v remains 

unchanged after the permutation process has been 

completed. 

Of course, once the rand() function has been invoked 

Z times, i.e. z = z0, every node starts producing a 

sequence of random numbers identical to the previous 

one. This can make it easier for the adversary to perform 

cryptanalysis, so making the generation of random 

numbers, and thus the TDMA slot permutation process, 

predictable. In order to solve this issue, it is sufficient 

that each node updates the permutation key K used by 

the rand() function, once z=z0. For instance, given an 

encryption function Ey(x) that encrypts a quantity x by 

means of a key y, the new permutation key K
+
 can be 

obtained by using the old permutation key K to encrypt 

itself, i.e. K
+
 ← EK(K). We discourage renewing z, since 

it would not result in the generation of a totally different 

pseudo-random sequence. Also, it would require to 

achieve consensus among sensor nodes in a distributed 

way. Accomplishing such a task may not be easy, and is 

likely to result in a not negligible additional overhead 

and energy consumption. 

3.3. Protection against jamming 
Let T0 be the first superframe after the slot allocation 

process has been completed. As described in Section 3.1, 

each node u is associated to the i-th slot of T0. Also, its 

permutation vector vu includes vu[i] = 1, and vu[j] = 0, ∀
j≠i. 

Hereafter, at the end of every superframe Tm, each 

node u locally determines the slot su to refer to during the 

next superframe, namely Tm+1, according to the 

following procedure. 

1. Node u produces a permutation v
*

u of its local 

vector vu, by invoking the permute() function 

described in Section 3.2, providing it with vector 

vu. Then, 



2. u replaces vu with the permutated vector 

computed at step 1, i.e. vu ← v
*

u. Then, 

3. u determines i such that vu[i] = 1. Finally, 

4. u selects the i-th slot as its own slot su of 

superframe Tm+1. 

It is worth noting that vectors v of different nodes 

always contain different configurations. Therefore, given 

any two distinct nodes u and w, results of their 

permutation process, namely v
*

u and v
*

w, are likely to be 

different vectors. However, this is not an issue from the 

jamming protection standpoint. In fact, every node u is 

interested only in producing its local permutation v
*

u, 

and then locating  the i-th entry of vu such that vu[i] = 1, 

in order to determine the slot su. Also, at superframe T0, 

every node has been exclusively associated to an 

available TDMA slot.  

Finally, swaps performed by the permute() function 

do not take into account values of vu elements, but 

consider only their position within the vector. Thus, for 

each pair of nodes u and w, if vu[i] = 1 and vw[j] = 1, then 

i ≠ j. As a consequence, at each superframe, every node 

exclusively accesses a TDMA slot, and no collisions 

occur. 

3.4. Discussion 
According to SAD-SJ, sensor nodes randomly 

generate a new slot allocation pattern at each 

superframe, efficiently and autonomously. Thus, at the 

end of each superframe Tm, every node u is able to 

correctly determine the slot su to be used during 

superframe Tm+1. In addition, SAD-SJ guarantees that 

slot su is exclusively assigned to node u, i.e. there are  no 

collisions with other nodes. From the adversary 

standpoint, her victim, say node u, accesses the medium 

during a slot which generally changes on a per-

superframe basis. Thus, in order to carry on the attack 

and disrupt u activities, the adversary is forced to pick 

one of the N slot at random, hoping it is assigned to u in 

the current superframe. This drastically reduces the 

effectiveness of the SJ attack to 1/N. 

4. Node leave and join 

In this section, we describe how sensor nodes leave 

and join the network. First, we describe the case when 

one or more sensor nodes leave, or are forced to leave, 

the network. SAD-SJ is not affected at all by nodes 

leaving the network, as they just release their own slot, 

which becomes available. The remaining sensor nodes 

continue with their normal operations. However, in order 

to assure and maintain network security, it is necessary 

to provide a new permutation key K to the remaining 

sensor nodes, by excluding and thus logically evicting 

the leaving ones. This problem is commonly known as 

rekeying, and has been widely discussed in literature 

[24][25][26][27]. Although we included it in our 

solution, this issue is beyond the scope of this paper. 

Now, we describe the join procedure, i.e. the process 

performed by a sensor node to join the network. For the 

sake of simplicity, we assume that, at each superframe, 

at most one sensor node attempts to join the network. 

The case of multiple-node joins is left for further study. 

We show that, under such hypothesis, the join process is 

extremely efficient and brief, as any sensor node is able 

to complete the join procedure in, at most, one 

superframe. 

In order to assure that new nodes can correctly join 

the network, each of the currently present nodes has to 

transmit additional information during its own slot. 

Specifically, at superframe Tm, each node u broadcasts 

also one additional information, that is the value 

assumed by z at the beginning of Tm. Such an 

information needs to be authenticated, in order to assure 

that it has been broadcast by legitimate network nodes. 

So doing, new nodes are able to synchronize themselves 

with the ongoing slot permutation process. 

Let us assume that a node u wants to join the network, 

and at least one slot is available, i.e. the number of active 

nodes is less than N. Node u is equipped with the shared 

permutation key K (provided to any sensor node before 

the physical deployment). Node u initializes its local 

vector vu as vu[i] = 0, ∀ i = {0,1,...,N−1}. Then, the join 

procedure takes place as follows. 

1. Node u listens to transmissions from other 

nodes during the current superframe, namely Tj, retrieves 

the current value of z, namely zj, and verifies its 

authenticity. Then, 

2. u locates the first free slot in superframe Tj, i.e. 

the i-th slot in the superframe. Finally, 

3. u initializes its local z as z=zj, and updates its 

local vector vu so that vu[i] = 1. 

As to step 1, in the worst case, only one sensor node 

is active and is using the last slot in the superframe. 

Hence, u is forced to listen to the entire superframe. 

However, in general, node u needs to listen to only a 

number of slots, up until it finds one assigned slot (to get 

the z value) and one available slot (to be used for 

subsequent operations). Hereafter, node u is able to 

correctly protect itself against the selective jamming 

attack, by using  the countermeasure described in 

Section 3.3. 

5. Overhead analysis 

In this section, we perform an analysis of the 

overhead caused by SAD-SJ. First, we derive the 

additional energy consumption due to our solution when 

the network is in steady state conditions. Then, we 

perform an analysis aimed at estimating both the 

duration of the join procedure and the average energy 

consumed by a sensor node to join the network. 

5.1. Overhead in steady-state conditions 

As shown in Section 3, SAD-SJ requires only trivial 

vector element swaps, and random number generation 

through encryption. Also, the additional transmission of 

z requires such information to be authenticated. 

However, both encryption and authentication operations 



can be efficiently performed by hardware components, 

provided by most of the available sensor platforms [21], 

such as the CC2420 chipset [28]. Thus, the overhead 

introduced by SAD-SJ is almost negligible from a 

computational standpoint. Instead, the actual security 

overhead is mostly due to the transmission of additional 

security information, that typically includes a specific 

authentication field, namely Message Integrity Code 

(MIC) [22]. To fix ideas, let us assume to represent z on 

4 bytes. Also, we consider different sizes of the MIC 

field, namely 4, 8, and 16 bytes, as prescribed by the 

IEEE 802.15.4 standard [12]. Of course, the larger the 

MIC field, the more data authenticity is guaranteed in 

case of an exhaustive brute force attack. Also, we denote 

with S the total additional number of bytes sent by every 

node during its own slot (i.e. S = z + MIC size). Finally, 

we consider the average transmission power 

consumption of the CC2420 chipset [28], i.e. PTX = 31.32 

mW, and a data transmission rate R = 250 Kbit/s [12]. 

 

z size MIC size S ETX 

4 Bytes 4 Bytes 8 Bytes 8.017 µJ 

4 Bytes 8 Bytes 12 Bytes 12.026 µJ 

4 Bytes 16 Bytes 20 Bytes 20.045 µJ 

Table 1. Additional energy consumption. 

Table 1 shows the additional energy per superframe 

consumed by each sensor node, namely ETX, computed 

as ETX = PTX · ((S · 8) / R). As it can be observed, such an 

overhead depends on the total amount of additional bytes 

sent, and results to be moderate and affordable. 

5.2. Join overhead 
In this section, we characterize the duration of the join 

procedure, i.e. the time taken by a node to join the 

network. Also, we measure the additional energy 

consumption due to the join procedure. To this end, we 

derive a Discrete-Time Markov-Chain (DTMC) model 

for the join procedure. 

We define ��  as the superframe at which a node u 

starts the join procedure, and 
� as the slot allocation 

pattern at superframe ��. Also, we indicate with �� and 

��, ��� � ��� � �, the amount of assigned and 

available slots in ��, respectively. Finally, we indicate 

with �����  the duration of a slot, and with ��� the power 

consumption of the radio while in receive mode. 

As described in the previous section, node u has to 

perform essentially two tasks: i) receive the actual value 

of z from one of the �� permanent nodes, and ii) locate 

the first available slot in the superframe. Once the two 

tasks have been completed, u switches off its radio, and 

waits for the beginning of the next superframe. As it can 

be observed, the time required by a node to complete the 

join procedure depends on the specific slot allocation 

pattern 
�. Specifically, the duration of the join 

procedure can range from only 2 slots to N slots. The 

former case occurs when the first slot of superframe �� is 

assigned and the second slot is available, or vice versa. 

The latter case occurs when there is only one node in the 

network and it accesses the last slot in ��. During 

superframe ��, each slot �� , � � �1, … , ��, has a 

probability equal to 
!"

!
 and 

!#

!
  to be either assigned or 

available, respectively. 

 

 

Figure 1. DTMC for the join procedure. 

The system is observed at the beginning of each slot 

�� , � � �1, … , ��, and the state of the system is 

represented by the state of the joining node at the 

beginning of each time slot. Initially, u is in state first, 

indicating that it is observing the first slot of superframe 

��. Instead, it is in state join_end when it has retrieved all 

the necessary information to join the network, and in 

state shutdown if it has switched off its radio. Also, u is 

in state $�% , &',  �% � �2, … , �� � 1�, if it examines slot 

��)
 and it has found only available slots before ��)

. 

Instead, it is in state *�+ , ,-,  �+ � �2, … , �� � 1� when it 

observes slot ��.   and it has found no available slots 

before ��. . 

In the analysis, we indicate the set of possible states 

of the chain as Ω. Since there are �� � 3� different states 

for the joining node u, |Ω| � �� � 3�. Figure 1 reports 

the graph representation of the DTMC. 

Now, we derive the transition probabilities for the 

Markov chain, i.e. the probability ��2 of passing from a 

state 3 to another state 4, 53, 4 � Ω. Initially, u 

observes the first slot in the superframe, i.e. it is in state 

first. Then, it moves either to state *2, &- or *2, ,-, in 

case it finds the first slot to be available or assigned, 

respectively. The probabilities of such transitions to 

occur are equal to 
!#

!
 and 

!"

!
, respectively. 

Now, let us assume that u is in state *2, &-. It moves 

either to state join_end if the second slot is assigned, or 

to state *3, &- if the second slot is found available. The 

transition *2, &- 6 78�9_;9< occurs with a probability 

equal to 
!"

!=>
. In fact, there are still �� ? 1) slots to be 

visited in the superframe, and no assigned slots have 

been found yet. Instead, the transition *2, &- 6 *3, &- has 

a probability equal to 
!#=>

!=>
  to occur, since there are 

��� ? 1� available slots out of �� ? 1� remaining slots.  

Now, we examine the transitions that can occur when 

@ is in state *2, ,-. There are two possible transitions: i) 



transition *2, ,- 6 *3, ,- that occurs when the second 

slot is assigned, and ii) transition *2, ,- 6 78�9_;9< 

which occurs when the second slot is available. Since 

there are �� ? 1� slots to be visited and ��� ? 1� 

assigned slots, transition i) occurs with probability 
!"=>

!=>
. 

Instead, the probability of transition ii) to occur is equal 

to  
!#

!=>
 since there are only �� available slots among the 

remaining �� ? 1� slots.  

The abovementioned considerations can be easily 

extended to all states 3 � $�% , &',  �% � �2, … , ���, and 

3 � *�+, ,-,  �+ � �2, … , ���. More specifically, the 

probability to pass from state $�% , &' to state $�% � 1, &', 
i.e. �A$�% , &', $�% � 1, &'B, is equal to: 

 

�A$�% , &', $�% � 1, &'B �
�� ? �% � 1
� ? �% � 1

 

 

Similarly, the transition from state *�+ , ,- to state 

*�+ � 1, ,-, i.e. ��*�+, ,-, *�+ � 1, ,-�, can be calculated 

as follows: 

 

��*�+, ,-, *�+ � 1, ,-� �
�+ ? �+ � 1
� ? �+ � 1

 

 

Instead, the transition probabilities from states *�% , &- 
and *�+ , ,- to state join_end can be calculated as: 

 

�A$�% , &', 78�9_;9<B �
��

� ? �% � 1
 

 

��*�+ , ,-, 78�9_;9<� �
��

� ? �+ � 1
 

 

In case u has visited ������ consecutive available 

(assigned) slots, i.e. it is in state *�� � 1, &-�*�� �
1, ,-�, it moves to state join_end with a probability equal 

to 1, since there are no more available (assigned) slots in 

the superframe. Finally, once u has reached the state 

join_end, it moves to state shutdown with probability 1, 

and remains there since it is an absorbing state. 

Once we have derived the transition probability 

��2, 53, 4 � Ω, we can obtain the transition probability 

matrix � of the Markov chain. To this end, we sort the 

states of the Markov chain so that first and join_end are 

the first and last state in the sequence, respectively. Let 

CD denote the initial probability vector, and CE the 

probability vector after F slots, F � �1,2, … , ��.  

Without loss of generality, we can assume CD �
*1,0, … ,0-. Hence, CE � CD · �E . The probability that the 

join procedure has a duration of exactly F slots, i.e. 

����H�F�, corresponds to the probability of being in state 

join_end at step F, i.e. CE*|Ω|-. 
Now, we can derive the average energy spent by node 

u to join the network. We denote with �I+J �
max���, ��� � 1 the maximum number of slots required 

to join the network. Also, we define N���� � ���� · ������ 

as the energy consumed by a joining node to observe a 

single time slot. Thus, if the join procedure has a 

duration of exactly F slots, the energy consumed by a 

joining node can be calculated as  F · N����. Instead, the 

average energy spent for the join procedure, i.e. N+OP, is 

equal to N+OP � ∑ F R N���� ·!S.T
EUV ����H�F�. In fact, we 

must take into account all possible durations of the join 

procedure. Hence, the sum considers any possible value 

F � �2, … , �I+J� of the joining time, which occurs with 

probability ����H�F�. Inside the sum, the product between 

F, ����H�F�, and N����  is performed. 

5.3. Results 

In this section, we show the results obtained from the 

analytical model we previously derived. In order to 

validate our analytical results, we relied also on 

simulation, and implemented SAD-SJ using the ns-2 

simulation tool [29]. We considered a single-hop 

network, where sensor nodes are located at a fixed 

distance (10 m) from the sink node. The transmission 

range was set to 15 m (according to the settings reported 

in [30]), while the carrier sensing range was set to 30 m, 

as in [31]. Unless stated otherwise, other parameter 

values are as shown in Table 2. For every experiment, 

we performed ten independent replications, each one of 

which consists of 1000 join procedures. Results shown 

below are averaged over all replications. We also 

derived confidence intervals by using the independent 

replication method and 95% confidence level. 

 

Parameter Value 

Slot duration (������ 7.4 ms 

Power Consumption in RX mode (PRX) 35.46 mW 

Number of slots  ��� 10, 30, 50 

Table 2. Parameters used in our analysis. 

 

 

Figure 2. Joining time distribution (N = 30). 

Figure 2 shows the probability distribution of the join 

duration, when the superframe is composed of 30 slots, 

for different percentages of allocated slots. It is derived 

both from analysis and simulation, whose results almost 



overlap. Hence, the model is validated. As it can be 

observed, the fraction of allocated slots significantly 

affects the duration of the joining operation. Specifically, 

the join duration decreases as the percentage of allocated 

slots tends to 50%. 

This is because, in such a case, the number of 

allocated and available slots is approximately the same. 

Thus, the joining node has a high probability to quickly 

locate both an available and an assigned slot. Instead, if 

there are few available or assigned slots in the 

superframe (i.e. the percentage of assigned slots is very 

high or very low), then the joining node has in general to 

visit a high number of slots before it can complete the 

join procedure. Also, note that, from a probabilistic 

standpoint, there are no differences between the case in 

which there are x% allocated slots or x% available slots 

in the superframe. 

 

Allocated 

slots (%) 

N (# of slots) 

10 30 50 

10, 90 10 19 22 

50 4 5 6 

30, 70 6 8 8 

Table 3. 95% joining time (# of slots). 

Table 3 reports the 95-th percentile of the joining time 

distribution for different values of � and percentages of 

assigned slots, i.e. the number of slots required to 

complete a join with a probability of, at least, 0.95. 

As it can be observed, the time required to join the 

network increases with the number of slots in the 

superframe. However, even with � � 50, the joining 

time remains low. Also, at most one superframe is 

required to join the network. 

 

 

Figure 3. Join average energy consumption. 

Figure 3 reports the average energy consumed to join 

the network, for N = {10,30,50}, with different 

percentages of assigned slots. As above, analytical and 

simulation results almost overlap. As it can be observed, 

in all considered scenarios, the average energy 

consumption displays a parabolic trend. Also, as 

expected, energy consumption displays a minimum in 

case the percentage of assigned slots is equal to 50%, 

while it increases if the percentage of assigned 

(available) slots is very low (high). Considerations made 

for the convergence time are valid also for energy 

consumption. 

6. Conclusion 

In this paper, we have presented SAD-SJ, a novel 

decentralized solution against selective jamming attack 

in TDMA-based WSNs. Our solution neutralizes the 

selective jamming attack, by forcing the adversary to 

perform a random attack, thus reducing its effectiveness 

to 1/N, where N is the total number of slots in the 

superframe.  We have shown that SAD-SJ is self-

adaptive, as it allows nodes to join and leave the network 

at any time and without affecting security of other nodes. 

Finally, SAD-SJ displays a negligible impact on network 

performance, and results in an additional energy 

consumption which is limited and affordable. Future 

work will extend our solution against selective jamming, 

in order to address multiple nodes attempting to join the 

network at the same time. 
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