
SAD-SJ: a Self-Adaptive Decentralized solution against

Selective Jamming attack in Wireless Sensor Networks

Marco Tiloca, Domenico De Guglielmo, Gianluca Dini and Giuseppe Anastasi

Department of Information Engineering, University of Pisa

Largo Lucio Lazzarino 2, 56122, Pisa, Italy

{marco.tiloca, domenico.deguglielmo, gianluca.dini, giuseppe.anastasi}@iet.unipi.it

Abstract

Wireless Sensor Networks (WSNs) are currently used

in many application scenarios, including industrial

applications and factory automation. In such scenarios,

Time Division Multiple Access (TDMA) is typically used

for data communication among sensor nodes. However,

TDMA-based WSNs are particularly prone to Selective

Jamming attack, a specific form of Denial of Service

attack aimed at severely thwarting network reliability. In

this paper, we present SAD-SJ, a self-adaptive and

decentralized MAC-layer solution against selective

jamming in TDMA-based WSNs. SAD-SJ does not need a

central entity, requires sensor nodes to rely only on local

information, and allows them to join and leave the

network without hindering other nodes activity. We show

that SAD-SJ introduces a limited overhead, in terms of

computation, communication and energy consumption.

1. Introduction

Wireless Sensor Networks (WSNs) are currently used

in a large number of application domains, including

industrial applications such as factory automation,

distributed and process control, robotic networks, real-

time monitoring of machinery health, detection of

liquid/gas leakage, radiation check, and so on [1][2].

Usually, energy efficiency is the major constraint in the

design of WSN-based systems [3], since sensor nodes

are typically powered by batteries, with limited power

budget. However, in industrial application scenarios,

additional requirements need to be considered, such as

scalability, reliability, timeliness, and security [2]. In

such scenarios, Time Division Multiple Access (TDMA)

is typically used for communication among sensor

nodes. In TDMA, time is divided into a sequence of

periodic superframes, each one composed of a fixed

number of transmission slots that are pre-assigned to

sensor nodes. Each sensor node is active only during its

own slot, and sleeps for the rest of the time, thus saving

energy. Therefore, TDMA provides guaranteed

bandwidth, high energy efficiency, absence of collisions

(i.e. high reliability), as well as low and predictable

latency.

On the other side, in TDMA-based sensor network,

communication is particularly vulnerable to jamming

attack, a specific form of Denial of Service (DoS) attack

aimed at thwarting network availability [4]. Basically,

jamming consists in interfering in network operational

frequencies, thus corrupting packets transmitted by

legitimate users. Jamming is considered a severe issue in

WSN communication [5][6].

TDMA is prone to a particularly insidious form of

jamming attack, namely Selective Jamming (SJ) [7][8].

This kind of attack aims at disturbing communication

among sensor nodes according to specific criteria and

objectives. For instance, an adversary could be interested

in jamming only the transmission of certain packet types,

or packets sent in one specific TDMA slot of the

superframe, or transmissions from a specific sensor

node. Also, selective jamming could severely

compromise specific traffic flows. In comparison with

traditional wide-band jamming, selective jamming is

more difficult to be detected, due to the reduced

adversary exposure. In the following, we focus on one

kind of selective jamming attack, according to which the

adversary aims at disrupting communication of one

specific sensor node.

Selective jamming attack has been thoroughly

investigated in literature [7][8]. Typical defenses

proposed against it are physical layer solutions, and rely

on spread-spectrum communication among sensor nodes

[4][5][6][7][8][9][10]. In [11], the authors propose a

multichannel MAC protocol aimed at enhancing

transmission efficiency while resisting wireless

interference and jamming. Furthermore, a MAC layer

countermeasure against selective jamming in IEEE

802.15.4 sensor networks [12] using the GTS

mechanism has been proposed in [13]. GTS is basically a

form of TDMA communication where slots in different

superframes are allocated to sensor nodes by the

coordinator node. Hence, it is extremely vulnerable to

selective jamming attacks. The authors have proposed a

centralized solution where the slot allocation pattern is

randomly changed at each superframe by the coordinator

node.

However, the presence of a coordinator node is the

main limitation of centralized sensor networks. Such a

node represents a single point of failure, i.e. if it fails, the

network goes out of service. Also, in a dynamic

environment, where the number of active sensor nodes

may change over time, sensor nodes have to explicitly

associate/de-associate with the coordinator node upon

joining/leaving the network. This results in additional

overhead and energy consumption on sensor nodes.

In this paper, we propose SAD-SJ, a self-adaptive and

decentralized solution against SJ attacks in sensor

networks using a generic TDMA scheme for

communication. SAD-SJ has a number of strengths.

First, it neutralizes the selective jamming attack, forcing

the adversary to carry out a random attack. Assuming

there are N transmission slots in the superframe, this

results in the attack effectiveness reduced to 1/N. In

addition, no centralized entity is required to contrast

selective jamming, and network nodes rely only on local

information. Finally, SAD-SJ is self-adaptive, i.e. nodes

can join and leave the network at any time, without

hindering other nodes activities. We also show that a join

operation in our scheme is always completed in, at most,

one superframe (while leave operations are

instantaneous). Finally, while SAD-SJ has been

conceived for TDMA-based sensor networks, it can also

be easily extended to slotted communication schemes

such as solutions based on de-synchronization

algorithms [14][15][16][17].

We evaluated the performance and overhead of SAD-

SJ through a network model based on a Discrete Time

Markov Chain (DTMC). We show that the introduced

overhead, in terms of computation, communication, and

energy consumption, is limited.

The rest of this paper is organized as follows. Section

2 describes the SJ attack we refer to, while in Section 3

we present and discuss our decentralized solution SAD-

SJ. Section 4 describes how new nodes join the network

in the presence of SAD-SJ. In Section 5, we discuss the

impact of our solution on network performance and

energy consumption, and provide an analysis of the join

overhead. Finally, in Section 6 we draw our conclusive

remarks.

2. SJ attack in TDMA sensor networks

In the following, we assume that time is divided into

periodic superframes of equal duration. A superframe T

consists of N equally sized transmission slots, each one

of which can be used to transmit one packet. In addition,

we assume that there are U ≤ N sensor nodes, and each

sensor node u has been permanently assigned one slot su,

in the superframe. Hence, node u can use slot su in all

superframes.

We consider an adversary whose objective consists in

disrupting communications of a specific target node,

namely u. In order to do that, she performs a form of

selective jamming by maliciously transmitting during

slot su assigned to sensor node u, thus interfering with its

network activities.

In a traditional TDMA-based sensor network, such an

attack is very easy to be performed. It is sufficient to

observe a single superframe T in order to determine the

slot su associated to sensor node u. Then, since u is

supposed to access slot su in all superframes, it is

possible to thwart its communications with an

effectiveness of 100%. Besides, since the adversary jams

one single slot per superframe, she can turn off the radio

during all other slots. From the adversary standpoint, this

makes such an attack also extremely efficient in terms of

energy consumption. In addition, it exposes the

adversary for a very limited amount of time, thus making

it difficult to detect her presence.

3. Our solution against SJ

In this section, we describe SAD-SJ, our

decentralized and self adaptive solution to the SJ attack.

Our approach is based on the following two independent

components.

1. Random Slot Reallocation. Starting from an

initial slot allocation pattern, at each superframe T, a

new (pseudo) random slot allocation pattern S is

generated. Specifically, S is computed by sensor nodes

in an autonomous way, i.e. relying only on local

information. In such a way, the adversary is no more

able to jam her victim communications, unless by

interfering with a randomly selected slot. This reduces

the attack effectiveness to 1/N.

2. Network Dynamicity Management. Network

dynamicity is specifically addressed, so that sensor

nodes can join and leave the network, at any time,

without interfering with other nodes activities. New

incoming nodes operate the join process in a fully

autonomous way, i.e. without requiring any central

entity.

3.1. Initialization
Before deployment, all sensor nodes are provided

with the following information.

i) A secret cryptographic symmetric key K, namely

permutation key, whose size discourages brute

force attack;

ii) an unsigned integer number z0 whose maximum

possible value is Z, i.e. z0 � �0, … , ��;

iii) the number of slots in each superframe, namely N.

In addition, each node u locally maintains an

unsigned integer z whose maximum possible value is Z,

i.e. z ∈ �0,...,Z�, and a bit vector vu of N elements,

initialized as vu[i] = 0,∀ i = {0,1,…,N-1}.

Once the initial slot allocation has been completed,

each sensor node is associated to one TDMA slot. Then,

each node u, associated to the i-th slot in the superframe,

performs the following steps:

(i) updates its local vector vu so that vu[i] = 1;

(ii) initializes z as z = z0.

Then, each sensor node protects itself from the SJ

attack, according to the procedure described in Section

3.3. In order to do that, sensor nodes rely on the slot

permutation procedure described in Section 3.2.

3.2. Slot permutation

In order to produce a pseudo-random re-allocation of

TDMA slots, each sensor node u needs to produce a

random permutation of vu elements. Such a process is

performed according to the following steps. Given a

vector v of N elements, producing a pseudo-random

permutation of its elements requires to i) generate N

pseudo-random numbers; and ii) perform N swap

operations, which displays O(N) computational

complexity.

In order to produce permutations of vector v, sensor

nodes must rely on a secure pseudo-random number

generator [18]. Provided that they all rely on the same

initial seed quantity, all sensor nodes are able to generate

the same unpredictable sequence of values over time,

and thus remain synchronized with one another during

the slot permutation procedure. Also, this must be

possible while relying only on local information, i.e.

without any information exchange.

This can be achieved by selecting a common initial

seed value, and then applying a one-way function to a

well known sequence of values. Examples of suitable

one-way functions include cryptographic hash functions,

such as SHA-1 [19], or block ciphers, such as AES-128

[20]. Although such ad-hoc methods have not been

proven to be cryptographically secure, they appear

sufficient for most applications [18]. The rand() function

shown below provides an example of pseudo-random

number generation based on the approach described

above. In the following, we assume the presence of a

secure and efficient symmetric cipher, that relies on a

secret cryptographic key.

int rand() {

int random_value = encrypt(z, K);

z = (z + 1) % (Z + 1);

return random_value;

}

We recall that K is the permutation key shared by all

sensor nodes, z is an integer value stored by all sensor

nodes, and Z is the maximum possible value of z.

Basically, the rand() function returns a pseudo-random

value computed as the output of a symmetric cipher. The

encryption process takes the permutation key K and the

current value of z as input. Before returning the new

random value, z is incremented by 1. Note that, upon

reaching the maximum possible value Z, z is assigned to

0, i.e. z = 0. Since all nodes initialize z with the same

value z0, it follows that the i-th generated number,

namely ri, is always the same for all nodes.

Besides, it is worth emphasizing that, with reference

to commercially-available WSN platforms such as Tmote

Sky [21], the actual encryption process can be performed

through hardware, with negligible processing overhead

in terms of both delay and energy consumption [22].

Thanks to the random number generation described

above, the actual permutation process can be performed

by each node, according to the following permute()

function. Its behavior is equivalent to the

random_shuffle() function provided by the C++ Standard

Template Library [23].

void permute(int v[]) {

for (int i = 0; i < N; i++)

swap(v[i], v[rand() % N]);

}

We recall that v is the vector stored by each node, and

composed of N elements. The loop in the permute()

function considers one element of v per step, and swaps

it with a randomly chosen element of the same vector.

As a special case, an element can be possibly swapped

with itself. Also, it is possible that the vector v remains

unchanged after the permutation process has been

completed.

Of course, once the rand() function has been invoked

Z times, i.e. z = z0, every node starts producing a

sequence of random numbers identical to the previous

one. This can make it easier for the adversary to perform

cryptanalysis, so making the generation of random

numbers, and thus the TDMA slot permutation process,

predictable. In order to solve this issue, it is sufficient

that each node updates the permutation key K used by

the rand() function, once z=z0. For instance, given an

encryption function Ey(x) that encrypts a quantity x by

means of a key y, the new permutation key K
+
 can be

obtained by using the old permutation key K to encrypt

itself, i.e. K
+
 ← EK(K). We discourage renewing z, since

it would not result in the generation of a totally different

pseudo-random sequence. Also, it would require to

achieve consensus among sensor nodes in a distributed

way. Accomplishing such a task may not be easy, and is

likely to result in a not negligible additional overhead

and energy consumption.

3.3. Protection against jamming
Let T0 be the first superframe after the slot allocation

process has been completed. As described in Section 3.1,

each node u is associated to the i-th slot of T0. Also, its

permutation vector vu includes vu[i] = 1, and vu[j] = 0, ∀
j≠i.

Hereafter, at the end of every superframe Tm, each

node u locally determines the slot su to refer to during the

next superframe, namely Tm+1, according to the

following procedure.

1. Node u produces a permutation v
*

u of its local

vector vu, by invoking the permute() function

described in Section 3.2, providing it with vector

vu. Then,

2. u replaces vu with the permutated vector

computed at step 1, i.e. vu ← v
*

u. Then,

3. u determines i such that vu[i] = 1. Finally,

4. u selects the i-th slot as its own slot su of

superframe Tm+1.

It is worth noting that vectors v of different nodes

always contain different configurations. Therefore, given

any two distinct nodes u and w, results of their

permutation process, namely v
*

u and v
*

w, are likely to be

different vectors. However, this is not an issue from the

jamming protection standpoint. In fact, every node u is

interested only in producing its local permutation v
*

u,

and then locating the i-th entry of vu such that vu[i] = 1,

in order to determine the slot su. Also, at superframe T0,

every node has been exclusively associated to an

available TDMA slot.

Finally, swaps performed by the permute() function

do not take into account values of vu elements, but

consider only their position within the vector. Thus, for

each pair of nodes u and w, if vu[i] = 1 and vw[j] = 1, then

i ≠ j. As a consequence, at each superframe, every node

exclusively accesses a TDMA slot, and no collisions

occur.

3.4. Discussion
According to SAD-SJ, sensor nodes randomly

generate a new slot allocation pattern at each

superframe, efficiently and autonomously. Thus, at the

end of each superframe Tm, every node u is able to

correctly determine the slot su to be used during

superframe Tm+1. In addition, SAD-SJ guarantees that

slot su is exclusively assigned to node u, i.e. there are no

collisions with other nodes. From the adversary

standpoint, her victim, say node u, accesses the medium

during a slot which generally changes on a per-

superframe basis. Thus, in order to carry on the attack

and disrupt u activities, the adversary is forced to pick

one of the N slot at random, hoping it is assigned to u in

the current superframe. This drastically reduces the

effectiveness of the SJ attack to 1/N.

4. Node leave and join

In this section, we describe how sensor nodes leave

and join the network. First, we describe the case when

one or more sensor nodes leave, or are forced to leave,

the network. SAD-SJ is not affected at all by nodes

leaving the network, as they just release their own slot,

which becomes available. The remaining sensor nodes

continue with their normal operations. However, in order

to assure and maintain network security, it is necessary

to provide a new permutation key K to the remaining

sensor nodes, by excluding and thus logically evicting

the leaving ones. This problem is commonly known as

rekeying, and has been widely discussed in literature

[24][25][26][27]. Although we included it in our

solution, this issue is beyond the scope of this paper.

Now, we describe the join procedure, i.e. the process

performed by a sensor node to join the network. For the

sake of simplicity, we assume that, at each superframe,

at most one sensor node attempts to join the network.

The case of multiple-node joins is left for further study.

We show that, under such hypothesis, the join process is

extremely efficient and brief, as any sensor node is able

to complete the join procedure in, at most, one

superframe.

In order to assure that new nodes can correctly join

the network, each of the currently present nodes has to

transmit additional information during its own slot.

Specifically, at superframe Tm, each node u broadcasts

also one additional information, that is the value

assumed by z at the beginning of Tm. Such an

information needs to be authenticated, in order to assure

that it has been broadcast by legitimate network nodes.

So doing, new nodes are able to synchronize themselves

with the ongoing slot permutation process.

Let us assume that a node u wants to join the network,

and at least one slot is available, i.e. the number of active

nodes is less than N. Node u is equipped with the shared

permutation key K (provided to any sensor node before

the physical deployment). Node u initializes its local

vector vu as vu[i] = 0, ∀ i = {0,1,...,N−1}. Then, the join

procedure takes place as follows.

1. Node u listens to transmissions from other

nodes during the current superframe, namely Tj, retrieves

the current value of z, namely zj, and verifies its

authenticity. Then,

2. u locates the first free slot in superframe Tj, i.e.

the i-th slot in the superframe. Finally,

3. u initializes its local z as z=zj, and updates its

local vector vu so that vu[i] = 1.

As to step 1, in the worst case, only one sensor node

is active and is using the last slot in the superframe.

Hence, u is forced to listen to the entire superframe.

However, in general, node u needs to listen to only a

number of slots, up until it finds one assigned slot (to get

the z value) and one available slot (to be used for

subsequent operations). Hereafter, node u is able to

correctly protect itself against the selective jamming

attack, by using the countermeasure described in

Section 3.3.

5. Overhead analysis

In this section, we perform an analysis of the

overhead caused by SAD-SJ. First, we derive the

additional energy consumption due to our solution when

the network is in steady state conditions. Then, we

perform an analysis aimed at estimating both the

duration of the join procedure and the average energy

consumed by a sensor node to join the network.

5.1. Overhead in steady-state conditions

As shown in Section 3, SAD-SJ requires only trivial

vector element swaps, and random number generation

through encryption. Also, the additional transmission of

z requires such information to be authenticated.

However, both encryption and authentication operations

can be efficiently performed by hardware components,

provided by most of the available sensor platforms [21],

such as the CC2420 chipset [28]. Thus, the overhead

introduced by SAD-SJ is almost negligible from a

computational standpoint. Instead, the actual security

overhead is mostly due to the transmission of additional

security information, that typically includes a specific

authentication field, namely Message Integrity Code

(MIC) [22]. To fix ideas, let us assume to represent z on

4 bytes. Also, we consider different sizes of the MIC

field, namely 4, 8, and 16 bytes, as prescribed by the

IEEE 802.15.4 standard [12]. Of course, the larger the

MIC field, the more data authenticity is guaranteed in

case of an exhaustive brute force attack. Also, we denote

with S the total additional number of bytes sent by every

node during its own slot (i.e. S = z + MIC size). Finally,

we consider the average transmission power

consumption of the CC2420 chipset [28], i.e. PTX = 31.32

mW, and a data transmission rate R = 250 Kbit/s [12].

z size MIC size S ETX

4 Bytes 4 Bytes 8 Bytes 8.017 µJ

4 Bytes 8 Bytes 12 Bytes 12.026 µJ

4 Bytes 16 Bytes 20 Bytes 20.045 µJ

Table 1. Additional energy consumption.

Table 1 shows the additional energy per superframe

consumed by each sensor node, namely ETX, computed

as ETX = PTX · ((S · 8) / R). As it can be observed, such an

overhead depends on the total amount of additional bytes

sent, and results to be moderate and affordable.

5.2. Join overhead
In this section, we characterize the duration of the join

procedure, i.e. the time taken by a node to join the

network. Also, we measure the additional energy

consumption due to the join procedure. To this end, we

derive a Discrete-Time Markov-Chain (DTMC) model

for the join procedure.

We define �� as the superframe at which a node u

starts the join procedure, and
� as the slot allocation

pattern at superframe ��. Also, we indicate with �� and

��, ��� � ��� � �, the amount of assigned and

available slots in ��, respectively. Finally, we indicate

with ����� the duration of a slot, and with ��� the power

consumption of the radio while in receive mode.

As described in the previous section, node u has to

perform essentially two tasks: i) receive the actual value

of z from one of the �� permanent nodes, and ii) locate

the first available slot in the superframe. Once the two

tasks have been completed, u switches off its radio, and

waits for the beginning of the next superframe. As it can

be observed, the time required by a node to complete the

join procedure depends on the specific slot allocation

pattern
�. Specifically, the duration of the join

procedure can range from only 2 slots to N slots. The

former case occurs when the first slot of superframe �� is

assigned and the second slot is available, or vice versa.

The latter case occurs when there is only one node in the

network and it accesses the last slot in ��. During

superframe ��, each slot �� , � � �1, … , ��, has a

probability equal to
!"

!
 and

!#

!
 to be either assigned or

available, respectively.

Figure 1. DTMC for the join procedure.

The system is observed at the beginning of each slot

�� , � � �1, … , ��, and the state of the system is

represented by the state of the joining node at the

beginning of each time slot. Initially, u is in state first,

indicating that it is observing the first slot of superframe

��. Instead, it is in state join_end when it has retrieved all

the necessary information to join the network, and in

state shutdown if it has switched off its radio. Also, u is

in state $�% , &', �% � �2, … , �� � 1�, if it examines slot

��)
 and it has found only available slots before ��)

.

Instead, it is in state *�+ , ,-, �+ � �2, … , �� � 1� when it

observes slot ��. and it has found no available slots

before ��. .

In the analysis, we indicate the set of possible states

of the chain as Ω. Since there are �� � 3� different states

for the joining node u, |Ω| � �� � 3�. Figure 1 reports

the graph representation of the DTMC.

Now, we derive the transition probabilities for the

Markov chain, i.e. the probability ��2 of passing from a

state 3 to another state 4, 53, 4 � Ω. Initially, u

observes the first slot in the superframe, i.e. it is in state

first. Then, it moves either to state *2, &- or *2, ,-, in

case it finds the first slot to be available or assigned,

respectively. The probabilities of such transitions to

occur are equal to
!#

!
 and

!"

!
, respectively.

Now, let us assume that u is in state *2, &-. It moves

either to state join_end if the second slot is assigned, or

to state *3, &- if the second slot is found available. The

transition *2, &- 6 78�9_;9< occurs with a probability

equal to
!"

!=>
. In fact, there are still �� ? 1) slots to be

visited in the superframe, and no assigned slots have

been found yet. Instead, the transition *2, &- 6 *3, &- has

a probability equal to
!#=>

!=>
 to occur, since there are

��� ? 1� available slots out of �� ? 1� remaining slots.

Now, we examine the transitions that can occur when

@ is in state *2, ,-. There are two possible transitions: i)

transition *2, ,- 6 *3, ,- that occurs when the second

slot is assigned, and ii) transition *2, ,- 6 78�9_;9<

which occurs when the second slot is available. Since

there are �� ? 1� slots to be visited and ��� ? 1�

assigned slots, transition i) occurs with probability
!"=>

!=>
.

Instead, the probability of transition ii) to occur is equal

to
!#

!=>
 since there are only �� available slots among the

remaining �� ? 1� slots.

The abovementioned considerations can be easily

extended to all states 3 � $�% , &', �% � �2, … , ���, and

3 � *�+, ,-, �+ � �2, … , ���. More specifically, the

probability to pass from state $�% , &' to state $�% � 1, &',
i.e. �A$�% , &', $�% � 1, &'B, is equal to:

�A$�% , &', $�% � 1, &'B �
�� ? �% � 1
� ? �% � 1

Similarly, the transition from state *�+ , ,- to state

�+ � 1, ,-, i.e. ���+, ,-, *�+ � 1, ,-�, can be calculated

as follows:

��*�+, ,-, *�+ � 1, ,-� �
�+ ? �+ � 1
� ? �+ � 1

Instead, the transition probabilities from states *�% , &-
and *�+ , ,- to state join_end can be calculated as:

�A$�% , &', 78�9_;9<B �
��

� ? �% � 1

��*�+ , ,-, 78�9_;9<� �
��

� ? �+ � 1

In case u has visited ������ consecutive available

(assigned) slots, i.e. it is in state *�� � 1, &-�*�� �
1, ,-�, it moves to state join_end with a probability equal

to 1, since there are no more available (assigned) slots in

the superframe. Finally, once u has reached the state

join_end, it moves to state shutdown with probability 1,

and remains there since it is an absorbing state.

Once we have derived the transition probability

��2, 53, 4 � Ω, we can obtain the transition probability

matrix � of the Markov chain. To this end, we sort the

states of the Markov chain so that first and join_end are

the first and last state in the sequence, respectively. Let

CD denote the initial probability vector, and CE the

probability vector after F slots, F � �1,2, … , ��.

Without loss of generality, we can assume CD �
*1,0, … ,0-. Hence, CE � CD · �E . The probability that the

join procedure has a duration of exactly F slots, i.e.

����H�F�, corresponds to the probability of being in state

join_end at step F, i.e. CE*|Ω|-.
Now, we can derive the average energy spent by node

u to join the network. We denote with �I+J �
max���, ��� � 1 the maximum number of slots required

to join the network. Also, we define N���� � ���� · ������

as the energy consumed by a joining node to observe a

single time slot. Thus, if the join procedure has a

duration of exactly F slots, the energy consumed by a

joining node can be calculated as F · N����. Instead, the

average energy spent for the join procedure, i.e. N+OP, is

equal to N+OP � ∑ F R N���� ·!S.T
EUV ����H�F�. In fact, we

must take into account all possible durations of the join

procedure. Hence, the sum considers any possible value

F � �2, … , �I+J� of the joining time, which occurs with

probability ����H�F�. Inside the sum, the product between

F, ����H�F�, and N���� is performed.

5.3. Results

In this section, we show the results obtained from the

analytical model we previously derived. In order to

validate our analytical results, we relied also on

simulation, and implemented SAD-SJ using the ns-2

simulation tool [29]. We considered a single-hop

network, where sensor nodes are located at a fixed

distance (10 m) from the sink node. The transmission

range was set to 15 m (according to the settings reported

in [30]), while the carrier sensing range was set to 30 m,

as in [31]. Unless stated otherwise, other parameter

values are as shown in Table 2. For every experiment,

we performed ten independent replications, each one of

which consists of 1000 join procedures. Results shown

below are averaged over all replications. We also

derived confidence intervals by using the independent

replication method and 95% confidence level.

Parameter Value

Slot duration (������ 7.4 ms

Power Consumption in RX mode (PRX) 35.46 mW

Number of slots ��� 10, 30, 50

Table 2. Parameters used in our analysis.

Figure 2. Joining time distribution (N = 30).

Figure 2 shows the probability distribution of the join

duration, when the superframe is composed of 30 slots,

for different percentages of allocated slots. It is derived

both from analysis and simulation, whose results almost

overlap. Hence, the model is validated. As it can be

observed, the fraction of allocated slots significantly

affects the duration of the joining operation. Specifically,

the join duration decreases as the percentage of allocated

slots tends to 50%.

This is because, in such a case, the number of

allocated and available slots is approximately the same.

Thus, the joining node has a high probability to quickly

locate both an available and an assigned slot. Instead, if

there are few available or assigned slots in the

superframe (i.e. the percentage of assigned slots is very

high or very low), then the joining node has in general to

visit a high number of slots before it can complete the

join procedure. Also, note that, from a probabilistic

standpoint, there are no differences between the case in

which there are x% allocated slots or x% available slots

in the superframe.

Allocated

slots (%)

N (# of slots)

10 30 50

10, 90 10 19 22

50 4 5 6

30, 70 6 8 8

Table 3. 95% joining time (# of slots).

Table 3 reports the 95-th percentile of the joining time

distribution for different values of � and percentages of

assigned slots, i.e. the number of slots required to

complete a join with a probability of, at least, 0.95.

As it can be observed, the time required to join the

network increases with the number of slots in the

superframe. However, even with � � 50, the joining

time remains low. Also, at most one superframe is

required to join the network.

Figure 3. Join average energy consumption.

Figure 3 reports the average energy consumed to join

the network, for N = {10,30,50}, with different

percentages of assigned slots. As above, analytical and

simulation results almost overlap. As it can be observed,

in all considered scenarios, the average energy

consumption displays a parabolic trend. Also, as

expected, energy consumption displays a minimum in

case the percentage of assigned slots is equal to 50%,

while it increases if the percentage of assigned

(available) slots is very low (high). Considerations made

for the convergence time are valid also for energy

consumption.

6. Conclusion

In this paper, we have presented SAD-SJ, a novel

decentralized solution against selective jamming attack

in TDMA-based WSNs. Our solution neutralizes the

selective jamming attack, by forcing the adversary to

perform a random attack, thus reducing its effectiveness

to 1/N, where N is the total number of slots in the

superframe. We have shown that SAD-SJ is self-

adaptive, as it allows nodes to join and leave the network

at any time and without affecting security of other nodes.

Finally, SAD-SJ displays a negligible impact on network

performance, and results in an additional energy

consumption which is limited and affordable. Future

work will extend our solution against selective jamming,

in order to address multiple nodes attempting to join the

network at the same time.

7. Acknowledgment

This work has been supported by the EU FP7

Integrated Project PLANET (Grant agreement n. FP7-

257649); the TENACE PRIN Project (n. 20103P34XC)

funded by the Italian Ministry of Education, University

and Research; and the Regione Toscana POR CReO

PITAGORA.

References

[1] A. Willig, “Recent and Emerging Topics in Wireless

Industrial Communications: a Selection”, IEEE

Transactions on Industrial Informatics, Vol. 4, N. 2, pp.

102-124, May 2008.

[2] R. Zurawski, “Networked Embedded Systems: An

Overview”, Chapter 1 in Networked Embedded Systems

(R. Zurawski, Editor), pp. 1.11-1.16, CRC Press, 2009.

[3] G. Anastasi, M. Conti, M. Di Francesco and A. Passarella,

“Energy Conservation in Wireless Sensor Networks: a

Survey”, Ad Hoc Networks, Vol. 7, N. 3, pp. 537-568,

May 2009.

[4] D.R. Raymond and S.F. Midkiff, “Denial-of-Service in

Wireless Sensor Networks: Attacks and Defenses”, IEEE

Pervasive Computing, Vol. 7, N. 1, pp. 74-81, 2008.

[5] L. Lazos, S. Liu and M. Krunz, “Mitigating control-

channel jamming attacks in multi-channel ad hoc

networks”, Proceedings of the second ACM conference on

Wireless network security (WiSec ’09), ACM, New York,

NY, USA, pp. 169-180, 2009.

[6] W. Xu, K. Ma, W. Trappe and Y. Zhang, “Jamming

sensor networks: attack and defense strategies”, IEEE

Network, Vol. 20, N. 3, p. 41-47, 2006.

[7] A. Proano and L. Lazos, “Selective Jamming Attacks in

Wireless Networks”, Proceedings of the 2010 IEEE

International Conference on Communications, pp. 1-6,

2010.

[8] R. Sokullu, I. Korkmaz and O. Dagdeviren, “GTS Attack:

An IEEE 802.15.4 MAC Layer Attack in Wireless Sensor

Networks”, International Journal On Advances in Internet

Technologies, Vol. 2, N. 1, pp. 104-114, 2009.

[9] D.R. Raymond and S.F. Midkiff, “Denial-of-Service in

Wireless Sensor Networks: Attacks and Defenses”, IEEE

Pervasive Computing, Vol. 7, N. 1, pp. 74-81, 2008.

[10] R. Pickholtz, D. Schilling and L. Milstein, “Theory of

Spread Spectrum Communications - A Tutorial”, IEEE

Transactions on Communications, Vol. 30, N. 5, pp. 855-

884, 1982.

[11] L. Tang, Y. Sun, O. Gurewitz and D. B. Johnson, “EM-

MAC: a dynamic multichannel energy-efficient MAC

protocol for wireless sensor networks”, Proceedings of the

Twelfth ACM International Symposium on Mobile Ad Hoc

Networking and Computing (MobiHoc ’11), pp. 23:1-

23:11, 2011.

[12] Institute of Electrical and Electronics Engineers, Inc. New

York, IEEE Std. 802.15.4-2006, IEEE Standard for

Information technology – Telecommunications and

information exchange between systems - Local and

metropolitan area networks - Specic requirements Part

15.4: Wireless Medium Access Control (MAC) and

Physical Layer (PHY) Specifications for Low-Rate

Wireless Personal Area Networks (WPANs), September

2006.

[13] R. Daidone, G. Dini and M. Tiloca, “On preventing GTS-

based Denial of Service in IEEE 802.15.4”, Poster and

Demo Proceedings of the 9th European Conference on

Wireless Sensor Networks (EWSN 2012), pp. 69-70, 2012.

[14] J. Degesys, I. Rose, A. Patel and R. Nagpal, “DESYNC:

Self-Organizing Desynchronization and TDMA on

Wireless Sensor Networks”, Proocedings of the 6th

International Symposium on Information Processing in

Sensor Networks (IPSN 2007), pp. 11-20, Cambridge,

USA, 2007.

[15] R. Pagliari, Y. Hong and A. Scaglione, “Bio-Inspired

Algorithms for Decentralized Round-Robin and

Proportional Fair Scheduling”, IEEE Journal on Selected

Areas in Communications (J-SAC), Vol. 28, N. 4, 2010.

[16] H. Kang and J. Wong, “A Localized Multi-Hop

Desynchronization Algorithm for Wireless Sensor

Networks”, Proceedings of IEEE INFOCOM 2009, pp.

2906-2910, Rio de Janeiro, Brazil, 2009.

[17] A. Motskin, T. Roughgarden, P. Skraba and L. Guibas,

“Lightweight Coloring and Desynchronization for

Networks”, Proceedings of IEEE INFOCOM 2009, pp.

2383-2391, Rio de Janeiro, Brazil, 2009.

[18] A. J. Menezes, P. C. van Oorschot and S. A. Vanstone,

Handbook of Applied Cryptography, CRC Press, Boca

Raton, FL, USA, 2001.

[19] National Institute of Standards and Technology (NIST),

Secure Hash Standard, National Institute of Standards and

Technology (NIST), Gaithersburg, MD, USA, 2008,

http://csrc.nist.gov/publications/fips/fips180-3/fips180-

3_final.pdf

[20] National Institute of Standards and Technology, Federal

Information Processing Standards Publication 197,

Specification for the ADVANCED ENCRYPTION

STANDARD (AES), November 2001.

[21] Moteiv Corporation, Tmote iv Low Power Wireless Sensor

Module, Moteiv Corporation, San Francisco, CA, USA,

November 2006,

http://www.cs.jhu.edu/~cliang4/public/datasheets/tmote-

sky-datasheet.pdf

[22] R. Daidone, G. Dini and M. Tiloca, “On experimentally

evaluating the impact of security on IEEE 802.15.4

networks”, Proceedings of the 2011 International

Conference on Distributed Computing in Sensor Systems

and Workshops (DCOSS 2011), pp. 20-25, June 2011.

[23] B. Stroustrup, The C++ Programming Language (3rd

ed.), Addison-Wesley, Boston, USA, 2000.

[24] C. K. Wong, M. Gouda and S. S. Lam, “Secure group

communications using keygraphs”, IEEE/ACM

Transactions on Networking, Vol. 8, N. 1, pp. 16-30,

February 2000.

[25] G. Dini and M. Tiloca,“HISS: a HIghly Scalable Scheme

for group rekeying”, The Computer Journal, pp. 1-18,

2012, in press.

[26] S. Rafaeli and D. Hutchison, “A survey of key

management for secure group communication”, ACM

Computing Surveys, Vol. 35, N. 3, pp. 309-329,

September 2003.

[27] G. Dini and I. M. Savino, “LARK: A Lightweight

Authenticated ReKeying Scheme for Clustered Wireless

Sensor Networks”, ACM Transactions on Embedded

Computing Systems, Vol. 10, N. 4, pp. 41:1-41:35, 2011.

[28] Texas Instruments, CC2420 2.4 GHz IEEE 802.15.4 /

ZigBee ready RF Transceiver, 2012,

http://focus.ti.com/lit/ds/symlink/cc2420.pdf

[29] Network Simulator Ns2, http://www.isu.edu/nsnam/ns

[30] J. Zheng and M. J. Lee, “A comprehensive performance

study of IEEE 802.15.4”, IEEE Press Book, 2004.

[31] G. Anastasi, M. Conti, M. Di Francesco and A. Passarella,

"A Comprehensive Analysis of the MAC Unreliability

Problem in 802.15.4 Wireless Sensor Networks", IEEE

Transactions on Industrial Informatics, Vol.7, N.1, pp.

537-568, February 2011.

