
1

JAMMY: a Distributed and Dynamic Solution
to Selective Jamming Attack in TDMA WSNs

Marco Tiloca, Domenico De Guglielmo, Gianluca Dini, Giuseppe Anastasi, Sajal K. Das

Abstract—Time Division Multiple Access (TDMA) is often used in Wireless Sensor Networks (WSNs), especially for critical
applications, as it provides high energy efficiency, guaranteed bandwidth, bounded and predictable latency, and absence of
collisions. However, TDMA is vulnerable to selective jamming attacks. In TDMA transmission, slots are typically pre-allocated
to sensor nodes, and each slot is used by the same node for a number of consecutive superframes. Hence, an adversary
could thwart a victim node’s communication by simply jamming its slot(s). Such attack turns out to be effective, energy efficient,
and extremely difficult to detect. In this paper, we present JAMMY, a distributed and dynamic solution to selective jamming
in TDMA-based WSNs. Unlike traditional approaches, JAMMY changes the slot utilization pattern at every superframe, thus
making it unpredictable to the adversary. JAMMY is decentralized, as sensor nodes determine the next slot utilization pattern in
a distributed and autonomous way. Results from performance analysis of the proposed solution show that JAMMY introduces
negligible overhead yet allows multiple nodes to join the network, in a limited number of superframes.

Index Terms—WSNs, TDMA, Security, Selective Jamming, DoS, Secure Slot Permutation, Decentralized Slot Acquisition

F

1 INTRODUCTION

WIRELESS Sensor Networks (WSNs) are being used
in a variety of domains including industrial ap-

plications, factory automation, environmental and health
monitoring and critical infrastructures. In such applica-
tions, Time Division Multiple Access (TDMA) is often
used to access the shared wireless medium. In TDMA,
time is divided into a sequence of periodic superframes,
each consisting of a fixed number of transmission slots.
Typically, slots are allocated to sensor nodes such that
each node needs to be active only during its own slot(s),
while it can sleep for the rest of the time. It is known
that TDMA provides guaranteed bandwidth, high energy
efficiency, absence of collisions (i.e., reliability), as well as
bounded and predictable latency.

Unfortunately, TDMA suffers from selective jamming
attack, a particularly insidious form of Denial-of-Service
(DoS) that allows an adversary to completely thwart the
communication of a victim node with a very low probability
to be detected. In TDMA-based WSNs, a node typically re-
tains its slot for many consecutive superframes. Therefore,
an adversary could preliminarily monitor communication
and detect the slot of the victim node. Then, the adversary
could jam that slot – feigning a collision, for example –

• M. Tiloca is with SICS Swedish ICT AB, Kista, Sweden (email:
marco@sics.se).

• D. De Guglielmo, G. Anastasi and G. Dini are with the Dept. of Infor-
mation Engineering, University of Pisa, Italy (email: {d.deguglielmo,
g.anastasi, g.dini}@iet.unipi.it).

• S. K. Das is with the Dept. of Computer Science, Missouri Univer-
sity of Science and Technology, Rolla, MO, United States (e-mail:
sdas@mst.edu).

This work was carried out during the tenure of an ERCIM “Alain
Bensoussan” Fellowship Programme. The research leading to these re-
sults has received funding from the European Union Seventh Framework
Programme (FP7/2007-2013) under grant agreement n� 246016.

and sleep for the rest of the superframe. Such an attack
is very effective, energy efficient, and much more difficult
to be detected than a traditional wide-band jamming [33].
Although several methods are available for jamming detec-
tion [36], their applications to selective jamming is greatly
complicated by the limited exposure time of the adversary
and the limited amount of traffic affected by the attack.

Both physical-layer solutions and cyber countermea-
sures against selective jamming have been proposed in
the literature, but they all exhibit some limitations. For
example, solutions operating at the physical layer rely on
spread-spectrum techniques, increased transmission power,
and antenna polarization or directional transmission [3][7].
Unfortunately, they only make the attack more difficult, but
are not able to neutralize it. Furthermore, these solutions
are more suitable for military networks with a large design
space, whereas commercial networks do not have the same
flexibility, since they must conform to norms and laws.
Cyber countermeasures for WSNs include [1][4][25]. How-
ever, they are mainly tailored to the IEEE 802.15.4 standard
and, hence, are not general. Furthermore, DEEJAM [1]
is based on frequency hopping, redundant encoding, and
packet fragmentation, and thus introduces a significant
computing and communication overhead. Finally, [25] is
a totally centralized solution, where sensor nodes regularly
exchange messages with a Coordinator node, and hence
displays a considerable energy consumption.

To overcome these limitations, we propose JAMMY, a
novel distributed and dynamic solution against selective
jamming attacks in TDMA-based WSNs. The proposed
methodology is based on a key idea, i.e., randomly per-
muting the slot utilization pattern on a superframe basis.
By doing so, the slot(s) used by a sensor node change(s)
unpredictably at each superframe. Hence, the adversary
is forced to jam slots picked at random in the hope to

2

guess the ones used by the victim node. Assuming that a
single slot per sensor node is used at each superframe, the
probability of a successful selective jamming attack is 1/N,

where N is the number of slots in a superframe. JAMMY
is distributed, as each sensor node computes the slot to
use in the next superframe autonomously (i.e., without
exchanging data) and in a consistent way (i.e., without
causing collisions). JAMMY is also dynamic as it manages
dynamic join and leave of multiple nodes. Finally, JAMMY
is general as, in principle, it can be used in any TDMA
network.

We evaluated the performance of our proposed solution
through both simulation experiments and measurements
in a real large-scale testbed. We also compared it with
a centralized solution, both in steady-state and dynamic
conditions. Our results show that JAMMY is effective. It
is also efficient as it introduces a negligible processing
overhead and no communication. Also, JAMMY allows
new sensor nodes to join the network in a limited time,
with consequent benefits in terms of energy consumption.

The paper is organized as follows. Section 2 surveys the
related works. Section 3 introduces the system model and
the attack model. Sections 4, 5 and 6 present JAMMY.
Specifically, Section 4 describes how sensor nodes compute
the next slot utilization pattern in a distributed way, while
Sections 5 and 6 describe how JAMMY manages the
leaving and joining of sensor nodes, respectively. Section 7
analyzes the performance of JAMMY in steady-state con-
ditions. Section 8 analyzes its performance in dynamic
conditions. The results in dynamic conditions are presented
in Section 9. Finally, conclusions are drawn in Section 10.

2 RELATED WORK
Jamming is considered one of the most common DoS
attacks, as well as a severe security issue in wireless
communications [14][20][30][33][34][36][37]. In the con-
text of WSNs, jamming attacks aim at interfering with
the network’s operational frequencies. Xu et al. [36] have
classified jamming attacks in WSNs as constant, deceptive,
random, and reactive.

The objective of a constant jammer is to corrupt all net-
work packets, by continually transmitting random signals.
However, such an “always-on” jamming strategy is based
on the continuous presence of a high interference level,
hence it is easy to detect [34][36]. On the other hand, a
deceptive jammer injects a constant stream of bytes into
the network, making it look as legitimate traffic. Unlike
constant jamming, deceptive jamming is harder to detect
using monitoring tools, since legitimate traffic is sent on the
medium. The main disadvantage of both the aforementioned
jamming strategies is their power inefficiency that limits the
attacker’s ability to be perpetual (i.e., without depending on
an external power source). In this regard, a more efficient
strategy is random jamming. It consists of alternating sleep
and jamming phases, thus reducing power consumption, but
this is usually less effective than constant and deceptive
jamming. Finally, a smarter and more power efficient ap-
proach is reactive jamming, which performs jamming only

when transmissions from other nodes take place. Reactive
jamming is likely to be confused with regular collisions,
hence it is much more difficult to detect.

In [4][25][28], the authors considered selective jamming,
a particular form of reactive jamming aimed at disturbing
communication among sensor nodes according to specific
criteria and objectives. Among the above jamming strate-
gies, selective jamming is more difficult to detect due to
the reduced adversary exposure, as well as more power
efficient. In this paper, we focus on a specific type of
selective jamming, where the adversary aims at disrupting
communication of one particular sensor node. Such an
attack is very easy to perform in a TDMA-based WSN.
Since a node typically retains a slot for many consecutive
superframes, an adversary has to monitor communication,
detect such a slot and jam it in order to completely thwart
the node’s communications. Also, the attack is power
efficient, as the adversary has to activate her radio only
during slots used by the victim node.

Approaches against jamming proposed in the literature
can be divided into physical-layer solutions and cyber
countermeasures (our proposed solution JAMMY belongs
to the latter class). Physical-layer solutions try to pre-
vent a jammer from interfering with network operational
frequencies. The most relevant proposals in this class
have been surveyed by Mpitziopoulos et al. [3]. The au-
thors mainly consider Frequency-Hopping Spread Spectrum
(FHSS) [27], a spread-spectrum transmission method that
switches a carrier among many frequency channels, accord-
ing to an algorithm shared by the transmitter and receiver.
Frequency hopping is based on the premise that operating
on a channel orthogonal to the jammer suppresses the
jamming interference. However, since current commercial
systems use only a small number of orthogonal bands, and
adjacent orthogonal channel interference exists, frequency
hopping has been shown to be rather ineffective [18]. Ad-
ditionally, Direct Sequence Spread Spectrum (DSSS) is also
considered. It consists of multiplying data to be transmitted
(RF carrier) by a Pseudo-Noise (PN) digital signal having a
frequency (chip rate) much higher than the original signal.
This replaces the original RF signal with a wide bandwidth
signal displaying a spectrum equivalent to a noise signal,
thus minimizing unauthorized interception and jamming of
radio transmission between nodes. However, Mpitziopoulos
et al. stress that, although the IEEE 802.15.4 standard
[15] relies on DSSS, this does not make it invulnerable
to jamming attack. Morever, the network is likely to be
taken down by jamming, due to the limited supported chip
rate, and the restricted transmission power of sensor nodes.
The main drawback of physical-layer solutions is that they
are not actually able to neutralize jamming attack.

Cyber countermeasures, on the other hand, assume that it
is always possible for a jammer to interfere with network’s
regular transmissions and make use of security schemes
to contrast jamming. The majority of solutions following
this approach addresses constant jamming [7][21][34][35],
while relatively fewer solutions target selective jamming
[1][4][11][25]. In the following, we survey only cyber

3

countermeasures addressing selective jamming. Our pro-
posal JAMMY also falls in this category.

Wood et al. [1] proposed DEEJAM, a new Medium
Access Control (MAC) protocol that provides defense
against jammers using IEEE 802.15.4-based hardware.
DEEJAM relies on frequency hopping, redundant encoding
and packet fragmentation, and aims at hiding packets from
a jammer node, thus evading its search and limiting the
impact of packets that are corrupted anyway. DEEJAM
is compatible with existing nodes’ hardware. However, it
is a solution specifically tailored to 802.15.4 WSNs and
introduces significant computational and energy costs in
resource constrained sensor nodes.

Proano et al. [4] analyze a specific selective jamming
attack, where the adversary thwarts the transmission of
particularly important kinds of packets. They also proposed
some methods, based on cryptographic primitives, to miti-
gate the attack effects. Encryption of transmitted packets is
an effective solution against packet classification. However,
it requires that the entire packet, including the header, is
encrypted (it is a common practice to leave the header
unencrypted, so that receivers can early abort the reception
of packets not destined to them). In their work, Proano et al.
considered a jammer that continuously senses and classifies
packets, in order to perform selective jamming based on
their importance. Instead, in this paper we consider a
different model of jammer, where the attacker does not need
to continuously monitor the channel to effectively perform
jamming attack.

In [11], Ashraf et al. proposed Jam-Buster, a low over-
head framework against selective jamming. Jam-Buster
relies on multi-block payloads, equal size of packets, and
randomization of nodes’ wake up time, to eliminate dif-
ferentiation of packet types and reduce predictability of
transmission times. Hence, the adversary is forced to trans-
mit more jamming signals, and thus spend more energy to
be effective. Also, more jamming transmissions eventually
result in a faster detection of the jamming source. Jam-
Buster does not try to outsmart the adversary through
an actual anti-jamming solution, but focuses on making
selective jamming less efficient and convenient to perform.

The closest work to JAMMY is [25], which proposes a
countermeasure against the GTS-based selective jamming
in 802.15.4 networks. GTS is basically a form of TDMA
communication, where up to 7 reserved time slots in each
superframe are allocated to sensor nodes by a central
Coordinator. GTS is extremely vulnerable and prone to
selective jamming attack [15]. In [25], the authors proposed
a centralized solution where the slot utilization pattern is
computed, and randomly changed at each superframe, by
the Coordinator node. This reduces the attack effectiveness
to at most 1/7. However, the central Coordinator represents
a single point of failure. In addition, this solution is tailored
to IEEE 802.15.4 and, hence, not general. In contrast,
JAMMY is distributed, because it does not require the
presence of any central entity, although multiple nodes are
still able to leave and join the network at any time. Finally,
although JAMMY is proposed in the context of WSNs, it

is a general solution that, in principle, can be used in any
TDMA-based wireless network.

A preliminary, non optimized, version of JAMMY is
presented in [22], which focused on single-hop WSNs;
new sensor nodes were allowed to join only one at a time,
and those already present in the network were required to
transmit additional information at every superframe. On the
other hand, the enhanced solution presented in this paper
considers multi-hop WSNs and allows multiple nodes to
simultaneously join at any time. Also, it does not require to
transmit any additional information to counteract selective
jamming, thereby introducing no communication overhead.

3 SYSTEM AND ADVERSARY MODEL

This section introduces the system and adversary models,
and describe the selective jamming attack considered in the
paper. We consider a multi-hop WSN represented by a com-
munication graph G = (U,L), where U = {u1, . . . , un

} is
the set of nodes in the network and L = {l1, . . . , lm} is
the set of directed edges l = (u

i

, u

j

), representing a link
between node u

i

and u

j

. Specifically, an edge l = (u
i

, u

j

)
exists iff node u

i

transmits data to node u

j

.
In the considered WSN, nodes access the wireless

medium using a TDMA method. This means that time is
divided into periodic superframes of equal duration, each
one of which is in turn composed of N equally-sized slots.
In the following, s

i

for i = 1, . . . , N , will denote the i-
th slot in the superframe. Slots are used by sensor nodes
for transmitting/receiving data packets. Specifically, each
sensor node remains active only during its own slots while
it sleeps in the remaining time. Each slot is long enough
to allow the transmission of a maximum-size data packet
and the reception of the related acknowledgement (ACK).
For simplicity, and without loss of generality, we assume
that, in any superframe, a sensor node can use at most one
slot to transmit data (Uniqueness Property) and uses it to
communicate with a single intended receiver.

Many links can be simultaneously active during the same
slot provided that they do not interfere with each other. In
particular, at every link, no collisions have to occur during
both the data packet and ACK transmission (Collision-Free
Property). In other words, for every link l = (u

i

, u

j

) 2 L,
it must be guaranteed that, when link (u

i

, u

j

) is active, i)
no other node within the interference range of u

j

transmits
data; and ii) no other node within the interference range
of u

i

receives data (and, hence, sends ACKs). For each
link l 2 L, we define a set of interfering links I(l) which
includes all the links belonging to L that interfere with l

(note that I(l) contains l itself). Thus, the Collision-Free
condition is straightforwardly defined as follows:

8 slot s,
X

i2I(l)

x

i

(s) = 1 if l is active during s (1)

where x

l

(s) is a binary variable, such that x
l

(s) = 1 if link
l 2 L is active during s, and 0 otherwise. This means that,
if link l is active during slot s, the associated interfering
set I(l) contains one active link only, i.e. l itself.

4

We also assume that the considered WSN has a dynamic
membership, i.e. sensor nodes may join and leave dynam-
ically. Specifically, a sensor node joins the WSN when its
mission starts, and leaves it when its mission terminates.
Upon joining the WSN, a node runs a decentralized Slot
Acquisition algorithm in order to acquire a slot to be used
for its subsequent data transmissions. We do not commit to
any specific slot acquisition algorithm, provided that the
adopted one satisfies the Uniqueness and Collision-Free
properties as defined above. We further assume that a node
retains the acquired slot until it leaves the network. Upon
leaving, it releases the slot, which becomes available to
other joining nodes.

With reference to the above system model, we consider
an external adversary whose objective is to disrupt all
transmissions of one specific victim node, by performing a
selective jamming attack, i.e., by maliciously transmitting
during the victim’s transmission slot. We assume that the
adversary does not compromise any sensor node, either
physically or logically, but she is able to eavesdrop and
jam any communication within the WSN. In addition,
while performing the attack, the adversary is willing to
be as much invisible as possible, in order to limit the
likelihood of being detected, and to save as much energy as
possible. Specifically, the considered adversary can easily
succeed in playing the selective jamming attack under the
aforementioned constraints as follows. First, she monitors
communications for one or more superframes, and identifies
the slot used by the victim node for data transmission. The
specific approach that the adversary adopts to perform this
task is not important here. For instance, she may exploit
some prior knowledge such as the victim’s identifier, its
position in the network, or the type of traffic it produces.
Then, starting from the next superframe, the adversary
systematically jams that slot as follows. The adversary stays
quiet until the victim’s slot and starts transmitting a radio
signal as soon as it senses the victim’s activity on the
channel. This behavior features a form of reactive jamming
that is harder to detect [33]. Since the victim uses the same
slot in all superframes, the attack is 100% effective. Besides,
it is also energy-efficient, as the adversary has to jam only
one slot per superframe, while she can turn off her radio
during all other slots. Finally, the attack becomes hardly-
detectable, as it exposes the adversary for a very limited
amount of time (one slot per superframe).

Throughout the paper, we refer to jammed area as the
portion of the WSN within which no packets can be
correctly received during the attack performance. Note that,
in order to successfully carry out the selective jamming
attack, the jammed area must include the receiver node
associated with the victim node.

4 THE JAMMY ALGORITHM

The selective jamming attack described above is based
on the observation that, in a traditional TDMA approach,
the same slot is typically used by a sensor node for data
transmission for many consecutive superframes (e.g., until

the node leaves the network). Hence, one way to contrast
the attack is to change the slot utilization pattern at every
superframe, so making it unpredictable. This means that the
adversary must not be able to predict the slot to be used by
the sensor node in the next superframe, even after observing
a number of superframes. Thus, the only strategy available
to the adversary to perform the selective jamming attack
while retaining power-efficiency and hard-detectability is to
randomly pick a slot and jam it. It follows that the attack
effectiveness decreases to 1/N , where N is the superframe
size (see Section 7).

In order to achieve such a goal, at the end of every
superframe we can compute the next slot utilization pattern
as a random permutation of the current one. However,
unpredictability is not sufficient. We also require that sensor
nodes are able to compute the next utilization pattern
autonomously, i.e., relying only on locally available infor-
mation. In addition, the computation of the slot utilization
pattern must be consistent. That is, all the nodes in the net-
work must autonomously compute the same permutation.
Otherwise, collisions would occur and the Collision-Free
property would not be guaranteed anymore.

To fulfill such requirements, we assume that every node
executes a random permutation algorithm. At the end
of each superframe, every node randomly permutes the
current slot utilization pattern, thus producing the next one.
Typically, a random permutation algorithm uses a random
number generator. In order to prevent collisions, nodes
must compute the same permutation and, thus, have to
produce the same sequence of random numbers. It follows
that nodes must use pseudo-random number generators
which must be maintained in the same internal state. This
also implies that, when a new node joins the network, its
generator must be initialized into the same internal state as
the one of the nodes already in the network. Also, to fulfill
the unpredictability requirement, the sequence of psedo-
random numbers must also be unpredictable, and therefore
the pseudo-random number generator must be secure [2].

In the following, we present our countermeasure against
selective jamming in detail. Specifically, in Section 4.1,
we introduce the random permutation algorithm and the
secure pseudo-random number generator (SPRNG) used
in JAMMY. Then, we analyse the system in steady state
condition, i.e., when no sensor nodes join/leave the network
(Section 4.2). Finally, we relax this assumption and show
that sensor nodes may join and leave at any time without
jeopardizing the solution (Sections 5 and 6).

It is worth noting that an adversary could still completely
jam the network by performing a wide-band jamming.
Alternatively, she could continuously monitor the network
in order to detect the new slot used by the victim node, and
then jam it. However, by doing so, she would compromise
her hard-detectability and power efficiency. Specifically, a
wide-band jamming would make the adversary consider-
ably easier to be detected [33]. Furthermore, wide-band
jamming and continuous monitoring would increase the
adversary’s power consumption, thus making the attack
inconvenient from the energy point of view.

5

4.1 On Implementing a Random Permutation
In this section, we introduce the two basic components
of JAMMY, namely a random permutation algorithm and
a Secure Pseudo-Random Number Generator (SPRNG).
While the literature provides many instances of such al-
gorithms, we need to design two of them which are
affordable on resource constrained sensor nodes. As to the
random permutation algorithm, we have used the Fisher-
Yates algorithm [19], also known as the Knuth shuffle
algorithm , which runs in O(n) time. We have implemented
the SPRNG by means of a block cipher in the counter
mode (Algorithm 1) [2]. Let E(x, y) denote a cipher
which encrypts a plaintext y by means of a key x. First,
we provide the generator with an encryption key K, and
initialize a counter z to a random seed z0. Then, we apply
the cipher to the sequence of values z, (z+1), (z+2), . . ., so
producing the output random sequence E(K, z), E(K, z+
1), E(K, z + 2), In the following, we call counter z

the internal state of the generator, and K the permutation
key. We assume also that K is kept secret and its length
discourages an exhaustive key search.

This is a common method to build a SPRNG out of a
cipher [2][5]. The crucial design requirement is that the
cipher must be secure. Here we refer to the AES, which
has the following two advantages. The first one is security:
there is currently no known analytical attack against AES
with a complexity less than a brute-force attack [5]. The
other advantage is that AES is affordable on resource-
constrained sensor nodes. Besides, commercially-available
sensor node platforms such as Tmote Sky provide AES-
128 encryption in hardware, with negligible overhead in
terms of delay, storage, and energy consumption [24]. An
optimized random permutation algorithm, for transmitter-
only nodes, is reported in the Appendix A.

1. unsigned K; // permutation key

2. unsigned z; // counter

3. unsigned random()

4. {

5. unsigned val = E(K, z);

6. z = (z + 1);

7. return val;

8. }

Algorithm 1: Secure Pseudo-Random Number Generator.

4.2 The Secure Slot Permutation Algorithm
We are now in a position to describe the Secure Slot
Permutation (SSP) algorithm used by JAMMY to protect
communications against selective jamming attack. In this
section, we assume that, after the system initialization, the
WSN membership is static, i.e., no sensor nodes join/leave.

We assume that every sensor node maintains a permuta-
tion vector, namely a vector of N unsigned elements, which
represents the node’s view of the current slot utilization
pattern. We denote by v

u

the permutation vector of node u

where v

u

[i] refers to the i-th slot in the superframe. Every
node maintains its own permutation vector as follows. If
node u does not use slot s

i

, then v

u

[i] = 0. If node u uses
slot s

i

to transmit data, then v

u

[i] = 1. Finally, if node u

uses slot s
i

to receive data from an associated transmitter,

then v

u

[i] = 2. The Uniqueness Property implies that
the permutation vector v

u

of a node u contains just one
element that is equal to 1. More formally, 8 0 i, j <

N, v

u

[i] = v

u

[j] = 1 , i = j. Finally, the Collision-Free
Property implies that all links active in a given slot s

i

do
not interfere with each other. More formally, for any pair
of links l1 = (a, b), l2 = (c, d) active during slot s

i

, i.e.,
v

a

[i] = v

c

[i] = 1 and v

b

[i] = v

d

[i] = 2, we have l1 62 I(l2)
and l2 62 I(l1), that is l1 and l2 do not interfere with one
another. Notice that element i can be 0 in every permutation
vector iff slot s

i

is not associated to any node.
Let us assume that nodes have been initialized via off-

line methods so that they all secretly share the same permu-
tation key K, and their on-board SPRNGs are all initialized
to the same initial state z0. Quantity K and z0 are randomly
selected following the recommendations in [16]. Finally, an
initial slot utilization pattern satisfying the Uniqueness and
Collision-Free properties has been defined and permutation
vectors have been initialized accordingly. Without any loss
of generality, we may assume that this initial slot utilization
pattern has been defined off-line. Alternatively, it may
have been produced by the decentralized Slot Acquisition
algorithm described in Section 6.1.

Upon current superframe expiration:
1: randomly permute v

u

2: Build set T s.t. T = {i : v[i] = 1}
3: Build set R s.t. R = {j : v[j] = 2}
4: return T , R

Algorithm 2: Secure Slot Permutation.

Since initialization, each node protects itself from the
selective jamming attack by periodically performing the
Secure Slot Permutation (SSP) algorithm (Algorithm 2) at
the end of every superframe. The SSP algorithm takes a per-
mutation vector as input and (pseudo-)randomly permutes
it (line 1). Then, it builds two sets, T and R (lines 2 and
3). Specifically, either T is an empty set (if u is a receiver-
only node) or it contains the index of the slot to be used for
transmission in the next superframe (Uniqueness property).
Instead, R contains the indexes of the slots to be used to
receive data during the next superfame. Then, Algorithm 2
returns sets T and R (line 4).

To fix ideas, let us focus on the first execution of the SSP
algorithm, i.e., at the end of the first superframe. When this
superframe ends, every node executes the SSP algorithm
passing its permutation vector as input. As all nodes share
the same permutation key K and have the SPRNG in the
same state (z0), they compute the same permutation, thus
meeting the requirement of consistency. Since the permu-
tation is based on a SPRNG, then it results unpredictable
for an adversary who does not know the permutation key,
i.e., the adversary cannot predict the slot used by the victim
node to transmit data in the next superframe. Note that the
only way for the adversary to compute the permutation is
to obtain the permutation key. However, this is not possible
since the adversary has no access, neither logically nor
physically, to the sensor node’s memory and the key has
a size that discourages any brute force attack. The SSP

6

algorithm operates only on locally available data and, thus,
each sensor node can autonomously compute the permuta-
tion without exchanging data with other nodes. Also, every
execution of the SSP Algorithm causes the counter of the
SPRNG to be incremented by N . As all nodes compute
the permutation at the end of the superframe, at the end of
the first superframe, all SPRNGs are still in the same state,
namely z = z0 +N. It follows that, in the next execution
of the SSP algorithm (end of the second superframe) nodes
will compute the same permutation once again, and take
their generators into the same next internal state. This
reasoning can be iterated for any subsequent superframe,
i.e., after r superframes, the internal state of the SPRNG
will be z = z0 + r · N . As it turns out, the value of the
counter of a SPRNG grows at a speed that is equal to the
number of slots N in a superframe.

Note that, the size of the counter of the SPRNG estab-
lishes an upper bound to the maximum length of the random
output sequence the generator is able to produce. Therefore,
the counter size must be adequately large to avoid the
counter to wrap-around during the network lifetime (e.g.,
64–128 bits). Anyhow, one way to deal with the counter
wrap-around is to refresh the permutation key and re-
initialize generators. Since the internal states of all SPRNGs
remain synchronized over time, the counter wrap-around
occurs at the same superframe on all sensor nodes. Hence,
at that point in time, all sensor nodes can simultaneously
and autonomously generate a new permutation key K

+ as
K

+ = E(K,K). Thereafter, all sensor nodes rely on K

+

until the next counter wrap-around occurs.
Finally, we argue that the Uniqueness and Collision-Free

properties are maintained.

Claim 1. The SSP algorithm maintains the Uniqueness and
Collision-Free properties at every superframe.

Proof: Omitted. See Appendix B.

5 NODE LEAVE

In this section, we describe how JAMMY behaves when
sensor nodes leave the network. Upon leaving, a given
node u stops using all slots it acquired for data transmis-
sion/reception, and does not perform any further action. The
behavior of remaining nodes which were not communicat-
ing with u is not affected at all. Conversely, every node t

involved in data communication with u behaves as follows.
Let T

l

denote the last superframe during which node u was
active. Also, let us indicate as T

l+k

the superframe when t

realizes that node u has left the network. Finally, we refer to
s

u

as the slot that node t is supposed to use to communicate
with node u during superframe T

l+k

. Since u is not active
anymore, t updates its own permutation vector as v

t

[u] = 0,
hence slot s

u

becomes idle.
There are different ways for node t to realize that node

u has left the network. For instance, node t can assume
that node u is not active anymore if no successful com-
munication with u occurs for k consecutive superframes.
Alternatively, node u can explicitly alert node t about

its own leaving, by means of a dedicated flag in its last
data/ack packet transmitted to node t.

In order to assure and maintain network security, it is
necessary to provide a new permutation key K to the
remaining sensor nodes, by excluding and, thus, logically
evicting the leaving ones. This can be done by rekeying, i.e.,
by revoking the current permutation key and distributing
a new one to all nodes but the leaving one. Rekeying is
beyond the scope of this paper. The literature provides
many rekeying schemes for WSNs, including [12][13][29].
JAMMY does not pose any particular requirement on
rekeying, thus we assume that it employs any available one.

6 NODE JOIN
JAMMY allows sensor nodes to join the network at any
time. In addition, multiple nodes can join the network
at the same time by executing a specific join procedure
(Section 6.2). The join procedure assumes that every joining
node performs a Slot Acquisition algorithm to get a slot
in the superframe for data transmission. In principle, any
decentralized slot scheduling algorithm could be used for
this purpose. In this paper, we propose the following Slot
Acquisition algorithm.

6.1 Slot Acquisition algorithm
We assume that joining nodes use a distributed approach,
through which they autonomously acquire a slot in the
superframe to communicate with a specific intended re-
ceiver. The algorithm considered here is an extension of
the one presented in [6] which was conceived for single-
hop networks. In the following, we refer to a joining node
u which wants to acquire a slot to communicate with a
receiver node t. For simplicity, we assume that node t is
active (i.e. it keeps its radio on) during all slots in the
superframe. Since we assume that an arbitrary number of
sensor nodes attempts to join the network simultaneously,
some of them will compete with node u to acquire a slot
for transmitting data to node t, while others will refer
to different receivers. However, if two joining nodes are
physically close to each other, they might interfere during
the slot acquisition phase, as described below.

According to our algorithm, sensor nodes compete to
acquire one slot to transmit data to their respective desti-
nation node. Specifically, the joining node u contending to
acquire a slot s

i

tries to transmit a fake packet to node t

during this slot. If t successfully receives such a packet, it
sends back an ACK to u during the same slot s

i

. If the
ACK is successfully received by node u, the latter acquires
the right to use slot s

i

to transmit data to node t in all
subsequent superframes. In fact, if both the fake packet and
ACK transmissions are successful, then no interference with
other links has occurred. Thus, u stops the slot acquisition
process, and completes the join procedure (see Section 6.2).
Starting from the next superframe, link (u, t) can use s

i

.
Now, let us describe the case when node t has not suc-

cessfully received any packet during slot s
i

. This happens if
no node has tried to transmit data to t during slot s

i

, or if a

7

collision has occurred. We have to distinguish two different
cases. If v

t

[i] = 0, i.e., slot s
i

is idle, then node t performs
no further actions. Otherwise, if v

t

[i] = 2, i.e., slot s
i

has
been already acquired by a transmitter node from which t

expects to receive a data packet, then node t broadcasts an
Alert packet. This is to notify all joining nodes within the
interference range of t that slot s

i

is not available.

The Slot Acquisition algorithm relies on a random
backoff time to prevent collisions from competing join-
ing nodes accessing the same slot s. Specifically, each
joining node waits for a random backoff w in the range
{0, 1, . . . ,W

B

� 1} · D
bo

, where W

B

is the backoff
window size and D

bo

is the backoff unit and, then, checks
the channel status. If the channel is found idle, it transmits
the fake packet. Thus, four possible outcomes can occur:
(i) ACK RECEIVED; (ii) CHANNEL BUSY; (iii) ALERT;
or (iv) NO NOTIFICATION. In case of successful ACK
reception (case (i)), node u acquires slot s to transmit
data to node t, as described above. Note that, once nodes
have acquired a slot, in all subsequent superframes they
do not wait for any backoff time nor check the channel
status before transmitting their data packets. This assures
that active nodes have priority over joining nodes. If node
u finds the channel busy after the backoff time (case
(ii)), it means that other nodes in the proximity of u

are already using slot s. Specifically, one or more joining
nodes physically close to u have selected a shorter backoff
time (i.e., node u has lost the contention), or slot s has
been already acquired by a transmitter node. Similarly, if
u receives an Alert packet (case (iii)), it means that slot
s is not available, as it is used by another transmitter node
which is not in the sensing range of u. In both the cases (ii)
and (iii), node u tries to acquire the next slot s+1 in the
current superframe. The last case is when no notification is
received by node u (case (iv)). This happens when: a) a link
interfering with (u, t) is using slot s; or b) slot s is available
but the fake packet of u collided with the fake packet sent
by another joining node. In such a case, node u tries again
with the same slot s in the next superframe. The rationale
behind this is that, if a collision occurred and the number of
colliding sensor nodes is limited, the contention will very
likely be resolved during the next superframe.

1: Choose a slot s in [1, N] randomly;
2: Contend for s (using a random backoff w);
3: Case ACK RECEIVED:
4: Acquire s and terminate the Slot Acquisition process;
5: Case CHANNEL BUSY or ALERT:
6: Re-try s+1 (with new random backoff w);
7: Case NO NOTIFICATION:
8: Defer contention to s in the next superframe (with

new random backoff w);
Algorithm 3: Slot Acquisition.

Algorithm 3 shows the actions performed by a joining
node u. Initially, it selects a random slot s in the current
superframe, in order to perform the contention process. This
random choice is aimed at spreading contention attempts
within the whole superframe, thus reducing the number

of competitors for every single slot, and increasing the
success probability. Then, node u contends for slot s using
a random backoff time w. As it can be observed, the slot
acquisition process can take more than one superframe
to complete. Also, note that the Secure Slot Permutation
(Section 4.2) complicates the acquisition of a slot, since
the slot utilization pattern changes at every superframe.

6.2 Join procedure
In this section, we describe the complete set of actions that
any joining node u performs to correctly join the network,
including the execution of the Slot Acquisition algorithm
described in Section 6.1.

To correctly start the join process at superframe T

j

,
we assume that node u is provided with i) the shared
permutation key K; and ii) the value z

j

to initialize the
generator counter z. Node u can retrieve such security
material from an additional entity, namely Join Manager,
which is responsible for the correct initialization of joining
nodes. In principle, the Join Manager can be implemented
in both centralized and distributed fashions. Intuitively, a
distributed version of the Join Manager can be composed
of a set of replicas, each one of which i) holds both the
current permutation key and SPRNG state; ii) keeps itself
synchronized with superframes in order to maintain an up-
to-date value of the SPRNG state; and, iii) participates to
rekeying in case of node’s leaving. For the sake of space,
here we consider a centralized version. One may argue
that this may constitute a single point of failure. However,
we can reasonably assume that the Join Manager is a
special-purpose computer properly designed, implemented
and managed to be reliable and secure. Although server
reliability and security are still research issues, the literature
provides a number of established techniques and method-
ologies (e.g. [10][17][26]). The centralized Join Manager
keeps itself synchronized with superframes to maintain an
up-to-date value of the SPRNG state. Besides, it participates
to rekeying in case of node’s leaving (see above).

1: z z
j

2: v
u

 0

3: s
i

 SlotAcquisition

4: ⇤ handler upon(superframe expiration)
5: z z +N

6: v
u

[i] 1

Algorithm 4: Join procedure.

Algorithm 4 describes the specific actions performed by
node u during the join procedure. Initially, u initializes
its generator to z

j

and its permutation vector to 0 (lines
1-2). Then, u executes the Slot Acquisition algorithm
(Section 6.1) to acquire a slot s

i

for transmitting data
to its intended receiver t (line 3). The Slot Acquisition
process may take one or more superframes to be completed.
Then, once initialized, the generator counter has to be kept
up-to-date with respect to the one on the other nodes.
Therefore, while the slot acquisition process is in progress,
we activate a handler (line 4) that updates the generator
counter whenever a superframe expires (line 5). Finally,

8

once the slot acquisition process has been completed, node
u updates its permutation vector to reflect such a slot
acquisition (line 6). Note that node t has to update its
own permutation vector v

t

. Specifically, upon successfully
receiving the fake packet from node u during slot s

i

, node
t updates its own permutation vector v

t

as v

t

[i] = 2. This
ensures that t considers slot s

i

as reserved for communica-
tion with u. Hereafter, at the end of every superframe T

m

,
node u locally determines the slot to be used in the next
superframe T

m+1, according to the Secure Slot Permutation
algorithm described in Section 4.2.

7 ANALYSIS IN STEADY STATE CONDITIONS
In this section, we consider a WSN operating in steady
state conditions (i.e., no sensor node joins or leaves the
network), and investigate the effectiveness of our pro-
posed solution against selective jamming. Furthermore, we
compare JAMMY with a centralized solution, in terms of
effectiveness and overhead introduced. For this purpose, we
consider a centralized solution that generalizes the solution
proposed in [25]. The centralized solution considered here
relies on a Coordinator node that, at each superframe T

m

: i)
generates a random slot utilization pattern, namely S

m

; and
ii) broadcasts S

m

together with a Message Authentication
Code, thereby ensuring S

m

authenticity and freshness.
Then, every node retrieves S

m

, and becomes aware of the
specific slot it is supposed to access at T

m

to transmit data.
Since a new slot utilization pattern S

m

is randomly created
on a per-superframe basis, the only strategy available to the
adversary is to randomly pick a slot and jam it.

7.1 Effectiveness Analysis
To evaluate the effectiveness against selective jamming,
we consider the attack success probability, defined as the
fraction of packets transmitted by the victim node u that
are corrupted by the attacker. We consider both the case
when no countermeasure is used, and the case where either
the centralized solution introduced above or JAMMY is
used. We recall that, in order to successfully carry out the
selective jamming attack, the jammed area must include the
receiver node associated with the victim node u. We assume
that the communication channel is ideal. Hence, corrupted
packets are only due to the selective jamming attack.

Our results are derived by means of simulation experi-
ments. Each experiment consists of 10 independent repli-
cations, and, for each replication, 1, 000, 000 superframes
are considered. We averaged simulation results over all
replications and derived confidence intervals by using the
independent replication method and 95% confidence level.

Figure 1 shows the effectiveness of the two different
approaches against selective jamming, i.e., the centralized
solution and JAMMY, considering three different numbers
of slots N in the superframe. We observe that, if no solution
is used, all transmissions from node u, occurring during
slot s

u

, are corrupted by the jammer (i.e. attack success
probability equal to 1). At the same time, the attack does
not affect any other nodes v 6= u which transmits in a slot

s

v

6= s

u

. Also, as expected, the attack success probability
is independent of the number of slots in the superframe.
Finally, the adversary also corrupts the transmissions from
all other nodes u

0 6= u using the same victim slot s
u

, and
whose associated receiver is in the jammed area.

Conversely, when using a selective jamming counter-
measure (i.e., the centralized solution or JAMMY), the
adversary cannot track her target u anymore. Hence, the
only available strategy consists of jamming one slot s

r

, by
picking it at random among the N slots in the superframe.
As a consequence, the adversary corrupts a fraction (1/N)
of the transmissions from every node which uses the
jammed slot and whose associated receiver node is in the
jammed area. It follows that only 1/N of transmissions
from the victim node u is corrupted by the jamming
adversary, i.e., if s

r

= s

u

. Again, in such a case the
adversary also corrupts the transmissions from all other
nodes u

0 6= u which use the same victim slot s

u

, and
whose associated receiver node is in the jammed area. On
the other hand, if s

r

6= s

u

, the adversary ends up to jam
transmissions from other nodes v 6= u which use slot s

r

and whose associated receiver node is in the jammed area.
Hence, if a countermeasure is used, the considered selective
jamming attack fails with probability (N � 1)/N .

Let us consider the general case when J > 1 colluding
adversaries cooperate to jam transmissions from node u.
Specifically, J different slots are selected at random, and
each slot is jammed by a different adversary. We assume
that J ⌧ N , to fairly model the considered selective
jamming attack, rather than a wide-band jamming. Hence,
the J adversaries overall corrupt a fraction (J/N) of the
transmissions from every node using one of the J jammed
slots and whose associated receiver node is in the jammed
area. If the J adversaries are not colluding (i.e. do not
cooperate), it is possible that multiple adversaries jam the
same slot. Thus, given the number of actually jammed slots
J

⇤ J , the attack success probability is equal to (J⇤
/N).

Figure 2 reports the simulation results for the case of
multiple jammers. Specifically, it shows the attack success
probability for different numbers J of (colluding) jammers,
when no solution is adopted and when either JAMMY or
the centralized solution is used (the superframe size is
equal to N = 30 slots). When no solution is adopted, all
transmissions from the the victim node are corrupted by the
jammers. Conversely, the results obtained when a selective
jamming countermeasure is used are fully consistent with
the expected theoretical value (J/N), i.e., 0.033, 0.10, and
0.167 for J = 1, J = 3, and J = 5, respectively.

Our results show that, from every node’s perspective,
the percentage of corrupted packets is acceptable and
practically affordable, and thus can be suitably handled by
means of retransmissions. Furthermore, the attack success
probability decreases for greater values of N . This suggests
that an appropriate sizing of the superframe would result
in a practically ineffective selective jamming attack.

Finally, the centralized solution and JAMMY display
the same effectiveness against the considered selective
jamming attack. However, if the adversary interfered with

9

 0

 0.2

 0.4

 0.6

 0.8

 1

Victim node u
(slot su)

Other node v
(slot sv)

Fr
ac

tio
n

of
 co

rru
pt

ed
 p

ac
ke

ts

N=10 NO SOLUTION1

0

N=30 NO SOLUTION

1

0

N=50 NO SOLUTION
1

0

N=10 Centralized
0
.1

0
.1

N=30 Centralized
0
.0
3

0
.0
3

N=50 Centralized
0
.0
2

0
.0
2

N=10 JAMMY
0
.1

0
.1

N=30 JAMMY
0
.0
3

0
.0
3

N=50 JAMMY
0
.0
2

0
.0
2

Fig. 1: Effectiveness against SJ (J = 1)

0,4

0,6

0,8

1

F
ra

c
ti

o
n

 o
f

c
o

rr
u

p
te

d
 p

a
c
k
e

ts

NO SOLUTION Centralized JAMMY

0

0,2

0,4

J=1 J=3 J=5

F
ra

c
ti

o
n

 o
f

c
o

rr
u

p
te

d
 p

a
c
k
e

ts

0.033
0.099

0.167

0.033
0.099

0.167

Fig. 2: Effectiveness againts SJ (J � 1)

0,4

0,6

0,8

1,0

Fr
ac

ti
o

n
 o

f
co

rr
u

p
te

d
 p

ac
ke

ts

Victim node

Nodes using the victim slot

Nodes using other slots

1

0,0

0,2

0,4

NO ATTACK NO SOLUTION JAMMY

Fr
ac

ti
o

n
 o

f
co

rr
u

p
te

d
 p

ac
ke

ts

0.01 0.01
0.03

0.01
0.04 0.02 0.020.01

Fig. 3: Effectiveness against SJ (Indriya testbed)

the transmission of the slot utilization pattern S

m

performed
by the Coordinator node in the centralized solution, she
would be able to prevent sensor nodes from receiving the
current slot utilization pattern, thus compromising network
communications altogether. Conversely, this cannot happen
with JAMMY, as the latter is a distributed solution.

7.1.1 Effectiveness analysis in a real WSN
To validate our simulation results and evaluate the effec-
tiveness of JAMMY also in a real WSN, we implemented
our solution in the Contiki OS [9] and performed an
experimental evaluation on the large-scale public testbed
Indriya [8]. Indriya is composed of 97 TelosB sensor nodes
deployed in a three-floor building at the National University
of Singapore. For each experiment, we considered 100
different configurations, each consisting of a randomly-
generated set of transmitter-receiver pairs of nodes in the
testbed (i.e. links). To ensure a collision-free transmission
schedule, we assigned TDMA slots to links offline, using
an edge coloring algorithm [23]. For each network config-
uration, we also selected (randomly) the victim node and
the jammer node. In all our experiments, we considered a
single jammer and set the superframe size to N = 30 slots.

We investigated three different scenarios, namely NO AT-
TACK (there is no selective jamming attack), NO SOLU-
TION (the adversary performs a selective jamming attack
and no countermeasure is used), and JAMMY (the adver-
sary performs a selective jamming attack and JAMMY is
used to contrast it). In order to experience similar con-
ditions, we evaluated the three scenarios back to back.
For each scenario, we ran 100 superframes with a certain
network configuration and, then, we repeated the same
steps for all the considered configurations. The results
shown below are averaged over all the considered network
configurations. We also show the 95% confidence intervals.

As above, to evaluate the attack success probability, we
measured the fraction of corrupted packets experienced
by nodes. However, in a real environment, the commu-
nication channel is not ideal and, hence, packets may be
corrupted also due to communication unreliability. Hence,
it is important to distinguish between packets corrupted by
the jammer and packets altered by transmission errors. To
this end, we considered for comparison the NO ATTACK
scenario, where no attack occurs and packets are corrupted
only due to transmission errors. Figure 3 shows that, in the

considered experiments, the fraction of corrupted packets in
the NO ATTACK scenario is very low, almost negligible.

Let us now focus on the two scenarios where a selective
jamming attack occurs. Figure 3 shows that, when no
countermeasure is used (NO SOLUTION scenario), all
packets originated by the victim node are corrupted, as
expected. In addition, transmissions from other nodes using
the same victim’s slot may be affected as well by the
selective jamming attack, hence the fraction of corrupted
packets slightly increases with respect to the corresponding
value in the NO ATTACK scenario. Instead, there is no
significant variation, with respect to the NO ATTACK
scenario, in the fraction of corrupted packets experienced
by nodes not using the victim’s slot.

When using JAMMY to contrast the selective jamming
attack, the fraction of corrupted packets experienced by the
victim node (and, hence, the attack success probability) re-
duces to about 4%. Considering the small fraction of pack-
ets corrupted by transmission errors, this value is consistent
with the expected theoretical value 1/N (corresponding
to 3.3%, since N = 30 in our experiments). We also
observe a reduction - with respect to the NO SOLUTION
scenario - in the fraction of corrupted packets experienced
by other nodes using the victim’s slot. This is because,
now, the adversary corrupts a significantly lower fraction
of transmissions on that slot. Finally, nodes using a slot
different from the victim’s one experience a higher fraction
of corrupted packets with respect to the NO SOLUTION
scenario. This is because, with JAMMY, the transmissions
from such nodes can be corrupted by the adversary, if
they occur during the jammed slot. The results presented
above confirm the ability of JAMMY to effectively contrast
selective jamming attacks in a real WSN.

7.2 Overhead Analysis

We conclude our analysis in steady-state conditions by eval-
uating the overhead incurred by JAMMY, and comparing it
with that of the centralized solution introduced above.

From a computational standpoint, JAMMY performs
only simple encryption operations, during the execution
of the SSP algorithm (see Section 4). Since such opera-
tions can be efficiently performed by common hardware
platforms [32], the computing overhead introduced by
JAMMY results to be negligible. Most importantly, from a

10

communication standpoint, JAMMY does not require sen-
sor nodes to perform any further transmission or reception
(in addition to the initial reception of K and z

j

from
the Join Manager). This results in two main advantages.
First, it does not determine any reduction of the available
network bandwidth. Second, it does not affect the energy
consumption of sensor nodes.

Let us now consider the centralized solution. For the
purpose of our analysis, the Coordinator node represents
a generic slot utilization pattern S

m

as an array of U

elements, where U is the number of active nodes in the
WSN. In particular, the i-th element of S

m

specifies the
slot to be used at superframe T

m

by sensor node i. Hence,
each element of S

m

has size equal to dlog2Ne bits and the
overall size of S

m

is U · dlog2Ne bits. If we denote by C

the size (in bits) of the Message Authentication Code, then
the energy overhead introduced by the centralized solution
at each superframe is the total energy E

centr

spent by all
sensor nodes to receive the slot utilization pattern. Thus,

E

centr

=
U · P

RX

· ((U · dlog2Ne) + C)

R

(2)
where P

RX

is the radio power consumption in receive
mode, and R denotes the data transmission rate. In the fol-
lowing, we refer to a data transmission rate R = 250 Kbit/s
[15] and a power consumption P

RX

= 35.46 mW [32].

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 5 10 15 20 25 30 35 40 45 50

E c
en

tr (
m

J)

U

C=32 bits
C=64 bits

C=128 bits

Fig. 4: Energy consumed by a centralized solution (N = 30).

Figure 4 shows E

centr

for different numbers of active
nodes (U) and different sizes of the Message Authentication
Code (C). In particular, we refer to a number of slots per
superframe N = 30. We can observe that the more nodes
in the network, the more energy is consumed. Also, as
expected, E

centr

is higher for larger values of C.
Finally, note that E

centr

is the constant amount of
energy spent by the network at each superframe, hence
the impact on energy consumption is constant over time.
Instead, as discussed above, JAMMY does not result in any
communication overhead other than the initial provisioning
of K and z

j

. Thus, its impact on the network lifetime
is negligible, while resulting to be as effective against
selective jamming as the centralized solution.

8 ANALYSIS IN DYNAMIC CONDITIONS

In this section, we analyze JAMMY in dynamic conditions,
i.e., when nodes join/leave the network. We develop an
analytical model of the JAMMY join procedure, and use it
to derive both the average energy and time spent by sensor
nodes to join the network. For comparison, in Appendix E
we also derive similar formulas for the centralized solution.

We consider a generic multi-hop WSN using JAMMY
to counteract selective jamming, and focus on a scenario
where a number N

j

of sensor nodes starts the join pro-
cedure at the same superframe T

j

, in order to acquire a
slot in the superframe for communication (see Section 6.2).
Let L

max

represent the maximum distance between any
two sensor nodes. We denote by R

CS

, R

I

and R

TX

the
carrier sensing, interference and transmission range of each
sensor node, respectively. Since we are considering a multi-
hop WSN, it follows that R

TX

< L

max

. Following the
literature, we assume R

CS

� R

I

> R

TX

. In addition, to
simplify our analysis and make it tractable, we assume that
R

CS

= R

I

> L

max

. In such a case, all nodes in the WSN
can sense and/or interfere each other’s transmissions and,
hence, the spatial reuse of slots is not possible. It follows
that at most N links can be active in the WSN and, hence,
this is a critical situation regarding slot acquisition.

At superframe T

j

, we assume that N

A

communication
links are active in the WSN. It follows that N

A

 N slots
of the superframe are already used while the remaining
N

F

= (N � N

A

) slots can be acquired by joining nodes
for communication. In the analysis, we consider the case
where N

j

= N

F

, i.e., the number of joining nodes is equal
to the number of available slots. In Section 9.2, we also
consider the case when N

j

> N

F

. We point out that,
in general, JAMMY allows any number of sensor nodes
to simultaneously join the network. Specifically, JAMMY
guarantees that any joining node successfully terminates
its join procedure in a short amount of time, as long as
there is an available slot in the superframe to accommodate
its transmissions. The analysis is divided into two parts.
First, we consider all the events that can occur during the
contention to acquire a slot. For each event, we derive
the corresponding probability and the energy spent by
contending sensor nodes. Then, we use such probabilities to
derive a Discrete Time Markov Chain (DTMC) model of
the overall join procedure and calculate the performance
metrics of interest. We make the following assumptions
about the Slot Acquisition algorithm (Algorithm 3).
1) A simple random backoff algorithm is used to solve
contention among sensor nodes trying to acquire the same
slot. Before sensing the channel and transmitting a fake
packet, each sensor node waits for a random backoff time
w in the range {0, 1, ..., W

B

� 1} · D
bo

, where W

B

is
the backoff window size and D

bo

is the backoff unit.
2) All joining nodes start competing at the first slot of
superframe T

j

, i.e., we do not consider the initial random-
ization (line 1). This maximizes the contention and, hence,
models a worst case condition.

8.1 Event Probabilities
In this section, we consider all the events that can occur
during the contention for a slot and, for each of them, we
derive the corresponding probability and the energy spent
by the contending sensor nodes.

Let us focus on a generic slot s

⇤ and assume that M

sensor nodes, out of N
j

, are contending for s⇤. First, let us

11

consider the case when slot s⇤ is already used by an active
link. Since active nodes have priority over joining nodes,
all M joining nodes find slot s⇤ already busy. According to
the Slot Acquisition algorithm (Algorithm 3), they wait for
the next slot in the same superframe. Now, let us analyze
the case when slot s

⇤ is free (it is not currently used by
any active link). Given the assumptions, the contention can
result in one of the following outcomes.
(a) SUCCESS. One of the joining sensor nodes success-

fully transmits its fake packet during slot s⇤ and, hence,
receives an acknowledgment.

(b) COLLISION. A collision is experienced by k joining
nodes for 2 k M , and no notification is received.

(c) BUSY CHANNEL. The channel is found busy by h =
(M � k) joining nodes, for 0 h (M � 2), that
schedule a retry at the next slot.

Please note that, since we are considering the case when
R

CS

> L

max

, collisions between data packets and fake
packets are not possible. It follows that the receiving nodes
will never send ALERT messages.

Now, we derive the probability of each of the above men-
tioned events to occur. Let W

B

denote the backoff window
size. In addition, we introduce the following definitions.
We denote by: P

F

s

(M) the probability that a successful
transmission occurs; PF

c

(k | M) the probability that k out
of the M contending nodes, k M , experience collision
at the free slot; and, finally, PF

b

(h | M) the probability that
h joining nodes find the channel busy at the free slot. The
following claim holds.

Claim 2.

P

F

s

(M) = M ·
WB�1X

w=0

✓
1

W

B

◆
·
✓
W

B

� 1� w

W

B

◆
M�1

(3)

P

F

c

(k |M) =

✓
M

k

◆
WB�1X

w=0

✓
1

W

B

◆
k

·
✓
W

B

� 1� w

W

B

◆
M�k

(4)
P

F

b

(h | M) = P

F

c

(M � h | M) (5)

Proof: Omitted. See Appendix C.
Now, let us denote by P

RX

(resp. P

TX

) the power
consumed by a sensor node in receive (resp. transmit)
mode, and let D

tx

and D

ack

represent the duration of
packet transmission time and ACK reception time, respec-
tively. Also, let D

CS

(D
to

) denote the duration of the
channel assessment (timeout interval). Finally, we indicate
as E

s

(M) and E

c

(k | M) the total energy consumed when
one of the M nodes transmits its packet successfully or k

out of the M nodes experience a collision. Moreover, E
u

is the energy spent by a sensor node during an acquired
slot. The following claim holds.

Claim 3.
E

s

(M) = M ·P
RX

·D
CS

+P

TX

·D
tx

+P

RX

·D
ack

(6)
E

c

(k | M) = M ·P
RX

·D
CS

+k · (P
TX

·D
tx

+P

RX

·D
to

)
(7)

E

u

= P

TX

·D
tx

+ P

RX

·D
ack

(8)

Proof: Omitted. See Appendix C.

8.2 Markov Chain Derivation
We are now in a position to derive a Discrete Time Markov
Chain (DTMC) model of the JAMMY join procedure, that
we use to derive the probability distribution of the joining
time and the average energy consumed by sensor nodes.

We observe the system at the beginning of every su-
perframe T

m

, and represent the system state as a vector
X

m

= [n1, n2, ..., nN

] where element n
i

for i = 1, . . . , N
refers to the i-th slot of the superframe T

m

. Specifically, n
i

indicates the number of joining nodes that contend for slot
i during superframe T

m

. We recall that we consider N

j

sensor nodes joining the network at the same superframe
T

j

and assume that N

j

= (N � N

A

), where N

A

is the
number of slots already acquired at superframe T

j

. Since
there are N

j

joining nodes, we have n

i

 N

j

, 8i. Also,
we denote by S

m

= [s1, s2, ..., s

N

] the slot utilization
pattern at the beginning of a superframe T

m

. Specifically,
s

i

indicates the state of slot s
i

at superframe T

m

, i.e., if it
is free (F) and, hence, can be acquired by joining nodes or,
if it is already acquired (A). Obviously, at superframe T

j

,
N

A

slots must have state equal to A.
At the beginning of superframe T

j

, the system state is
X

j

= [N
j

, 0, ..., 0], since all joining nodes contend for
the first slot of superframe T

j

(Assumption 2). Then, the
system can evolve to different states depending on the slot
utilization pattern at superframe T

j

and the specific events
that occur during superframe T

j

. The join procedure ter-
minates when the system reaches state X

f

= [0, 0, ..., 0],
that is when all joining nodes have successfully acquired a
slot for communication and, hence, become active nodes.

We designed an algorithm to i) derive all the possible
states where the system can evolve to, ii) compute the
probability that the system passes from one state to another,
and iii) calculate the average energy spent by the system
during each state transition. The algorithm takes as input N ,
N

A

, N
j

and produces as output set ⌦ and matrices P and
E. Specifically, ⌦ is the set of possible system states, and P

is the transition probability matrix of the system (i.e., each
element P

XY

where {X,Y } 2 ⌦, indicates the probability
that the system changes its state from X to Y). Finally,
E refers to the energy consumption of joining nodes; each
element E

XY

is the average energy consumed by joining
nodes when the system changes its state from X to Y . For
the sake of space, we describe the designed algorithm in
Appendix D. Here we use ⌦, P, and E to derive:
• P

join

(k), k = 0, 1, ...: probability that the join
procedure is over at the beginning of superframe T

j+k

,
i.e. the probability that all joining nodes complete their
join procedure in k superframes. P

join

(k) provides the
probability mass function of the joining time.
• E

k

, k = 0, 1, ...: average energy spent by all joining
nodes during superframe T

j+k

.
• E

join

: average energy consumed by all joining nodes
during the entire duration of the join procedure. E

join

represents the total join overhead in terms of energy.
To derive P

join

(k), we sort the states of the Markov
Chain so that the initial state of the system X

j

=
[N

j

, 0, ..., 0] and the final state X

f

= [0, 0, ..., 0] are

12

the first and last one in the sequence, respectively. Also,
let v0 be the initial probability vector, and v

k

, k � 0,
the probability vector related to superframe T

j+k

. With no
loss of generality, we can assume that v0 = [1, 0, . . . , 0],
thus v

k

= v0 · P k. Hence, the probability that the join
procedure has been completed after k superframes, i.e.,
P

join

(k), corresponds to the probability that the system
state at step k is X

f

. Let us denote by |⌦| the cardinality
of the set ⌦, i.e., the total number of system states. Since
X

f

is the last state in the sequence, it follows that
P

join

(k) = v

k

[|⌦|] (9)
Let us now derive the average energy E

k

spent by all
joining nodes during superframe T

j+k

, k � 0. Let P k

X

be
the probability that the system is in state X at superframe
T

j+k

, for any X 2 ⌦. As P

k

X

is the component of vector
v

k

associated to state X , then the following equation holds.

E

k

=
X

X2⌦

P

k

X

·
X

Y 2⌦

E

XY

P

XY

(10)

Equation 10 can be justified as follows. In order to calculate
E

k

, we must consider all possible state changes that can oc-
cur from superframe T

j+k

to the next superframe T

j+k+1.
Hence, the outer sum considers any possible system state
X , at superfame T

j+k

, whose occurrence probability is P k

X

.
Then, for each state X , the inner sum considers all possible
states Y where the system can evolve to. Such a transition
has a probability occurrence P

XY

, and is associated with
an average energy consumption E

XY

.
Finally, we derive the average energy (E

join

) spent by all
joining nodes during the whole join procedure. We recall
that the join procedure is over when the system reaches
state X

f

= [0, 0, ..., 0]. Thus, E
join

= µ

Xj (11), where
µ

Xj indicates the average energy consumed by all joining
nodes to reach state X

f

starting from state X

j

. According
to [31], the average energy µ

X

consumed by the network
to reach state X

f

, starting from any state X 2 ⌦, can be
obtained by solving the following linear equation system,
with µ

X

as unknowns, and µ

Xf = 0:

µ

X

=
X

Y 2⌦

P

XY

· (E0
XY

+ µ

Y

), 8X 2 ⌦ (12)

where E

0
XY

differs from E

XY

, since it does not take into
account the energy consumed by joining nodes after they
have completed the join procedure.

9 PERFORMANCE EVALUATION

In this section, we evaluate the overhead incurred by the
join procedure, in terms of duration and energy consump-
tion, by using the equations derived in Section 8. We also
compare JAMMY with the centralized solution. To validate
our analytical results, we rely on simulation experiments.
Unless stated otherwise, the parameter values are as shown
in Table 1. The considered values have been inspired by
the 802.15.4 standard [15]. For simulation experiments, we
used the same methodology described in Section 7 and
considered 10 independent replications, each consisting of
1,000,000 trials. In each trial, N

j

sensor nodes simultane-
ously try to join the network. The analysis is organized in

two parts. Section 9.1 analyzes the case where the number
of joining nodes N

j

is equal to the number of available slots
N

F

. Then, Section 9.2 considers the case where N

j

� N

F

.

Parameter Value Parameter Value
Data transmission rate (R) 250 Kbit/s Association transmission time (D

ass

) 4.256 ms
Power Cons. TX mode (P

TX

) 31.32 mW Ack transmission time (D
ack

) 352 µs
Power Cons. RX mode (P

RX

) 35.46 mW Timeout interval (D
to

) 864 µs
Channel assessment duration (D

CS

) 128 µs Backoff window size (W
B

) 8
Data transmission time (D

tx

) 4.256 ms Ut. pattern transmission time (D
sap

) 0.432 ms

TABLE 1: Parameters used in our analysis.

9.1 Analytical Results (Nj = NF)
Figure 5 shows the duration of the join process calculated
using Equation 9, for N = 10 and different N

j

values. In all
the considered scenarios N

F

= N

j

. Note that analytical and
simulation results are very close. As expected, the duration
of the joining process significantly increases as N

j

grows
up. This is because, when more sensor nodes try to join
the network simultaneously, the probability of collisions in
the slot acquisition increases accordingly. However, in all
the considered scenarios, the join procedure terminates in
few superframes, as the 99-th percentile of the distribution
is always less than, or equal to, 5 superframes.

Figure 6 shows the average energy consumed by all
N

j

joining nodes during each superframe (derived from
Equation 10), for N = 10 and different numbers of joining
nodes N

j

(analytical and simulation results almost overlap).
The average energy consumption exhibits the same trend for
all the considered scenarios. At T

j

, the energy consumption
is higher than during the next superframes, as all joining
nodes are still contending to acquire a slot and, hence,
there is the maximum level of contention. However, the
consumed energy tends to a constant value once the join
procedure has been completed. As expected, the energy
consumption is higher for greater values of N

j

, i.e., in
the presence of more joining nodes. Figure 5 shows that,
even in the worst case, the 99-th percentile of the join
duration is less than 6 superframes. Hence, from Figure 6
we conclude that, apart from the initial superframe T

j

, the
energy consumed by joining nodes is only slightly higher
than the energy consumed after the join procedure has been
completed (e.g., from T

j+6 onwards). Thus, the additional
energy consumed by sensor nodes during the join process
is very limited, compared with the energy consumed during
the entire network lifetime.

In Appendix E, we compute the overhead introduced by
the join process when the centralized solution described in
Section 7 is used. Figure 7 compares the energy spent by
the joining nodes over time, when either JAMMY or the
centralized solution is used. We can observe that, except
for superframe T

j

, where the contention for slot acquisition
is very high, JAMMY always results in a smaller energy
consumption. This is because JAMMY does not require any
data exchange after the join procedure is completed.

Table 2 reports E
join

and E

C

join

, the average total energy
spent by all joining nodes during the entire join process,
with JAMMY and the centralized solution, respectively.
E

join

and E

C

join

characterize the total overhead of the join

13

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

Jo
in

 P
ro

ba
bi

lity

k

N=10

Analysis, Nj=1
Simulation, Nj=1

Analysis, Nj=5
Simulation, Nj=5

Analysis, Nj=7
Simulation, Nj=7

Fig. 5: P
join

(k) (N = 10).

 0

 0.5

 1

 1.5

 2

 2.5

Tj Tj+1 Tj+2 Tj+3 Tj+4 Tj+5 Tj+6 Tj+7 Tj+8 Tj+9

Av
g.

 E
ne

rg
y

Co
ns

um
pt

io
n

(m
J)

Superframe

N=10

Analysis Nj=1
Simulation Nj=1

Analysis Nj=5
Simulation Nj=5

Analysis Nj=7
Simulation Nj=7

Fig. 6: E
k

(N = 10).

 0

 0.5

 1

 1.5

 2

 2.5

Tj Tj+1 Tj+2 Tj+3 Tj+4 Tj+5 Tj+6 Tj+7 Tj+8 Tj+9

Av
g.

 E
ne

rg
y

Co
ns

um
pt

io
n

(m
J)

Superframe

JAMMY vs. Centralized solution

Centr Nj=1
Centr Nj=5
Centr Nj=7

JAMMY Nj=1
JAMMY Nj=5
JAMMY Nj=7

Fig. 7: E
k

(N = 10).

N

j

E
join

(mJ) EC

join

(mJ) �
E

(mJ)
1 0.18 0.13 0.05
5 1.23 0.67 0.56
7 1.85 0.93 0.91

TABLE 2: Total energy spent to complete the join process (N = 10)

procedure in terms of energy consumption. We compute
E

join

according to Equation 11. Also, EC

join

is calculated
as EC

k

, with k = 0, according to Equation 30 (appendix D),
as we optimistically assume that the joining process with
the centralized solution is always completed at T

j

.
From Table 2, we observe that the total energy consump-

tion due to the join process is smaller when the centralized
solution is used (see the difference �

E

= E

join

�E

C

join

in
the rightmost column). However, note that in the long term
JAMMY is significantly more efficient than the centralized
solution, due to its distributed nature. Specifically, in the
centralized solution, the reception of the slot utilization
pattern at every superframe quickly neutralizes the benefit
of the shorter join process. To fix ideas, the energy �

E

saved with the centralized solution when N

j

= 5 is
approximately equal to the energy spent by the same joining
nodes to receive the slot utilization pattern for 8 consecutive
superframes. That is, after only 8 superframes, the benefit
due to the shorter join process is neutralized.

9.2 Simulation Results (Nj � NF)

Now, we rely on simulation to evaluate the join process
overhead when the number of joining nodes is higher than
or equal to the number of available slots at superframe T

j

(i.e., N
j

� N

F

). Note that, in such a case, only N

F

joining
nodes can successfully acquire a slot for communication.
Figure 8 shows the probability distribution function of the
joining time, when N = 10, N

A

= N

F

= 5, and different
values of N

j

are considered. In all the experiments, we
considered the join process completed when N

F

out of N
j

joining nodes have successfully acquired a slot.
As shown in Figure 8, the duration of the join process

increases only slightly with the number of joining nodes
N

j

. Specifically, the 99-th percentile of the distribution is
always less than, or equal to, 5 superframes. This means
that JAMMY is very efficient in managing contention,
even in the presence of a large number of joining nodes.
We also measured the energy spent by joining nodes that
successfully acquire a slot. We did not observe a significant
difference between the cases N

j

= N

F

and N

j

� N

F

.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

Jo
in

 P
ro

ba
bi

lity

k

Nj=5
Nj=8

Nj=10

Fig. 8: P
join

(k) (N = 10, N
A

= 5).

10 CONCLUSION
We have presented JAMMY, a novel and distributed so-
lution to selective jamming attacks in TDMA WSNs.
JAMMY forces the adversary to perform the attack at
random, hence reducing its effectiveness to 1/N , where N

is the number of slots in the superframe. We have evaluated
JAMMY through analysis, simulation and measurements in
a real large-scale testbed. When the network is in steady-
state conditions, JAMMY introduces no communication or
energy overhead, regardless the number of sensor nodes in
the network. Hence, it outperforms a generic centralized
solution operating in similar conditions, in terms of avail-
able bandwidth and energy efficiency. We have analyzed
JAMMY in dynamic conditions, i.e., when nodes join or
leave. Our results show that the join procedure always
terminates in a short number of superframes, and introduces
a limited energy consumption on joining nodes. Future
works will focus on extending JAMMY for multichannel
TDMA WSNs (e.g., with reference to IEEE 802.15.4e).

ACKNOWLEDGMENT
The authors sincerely thank the anonymous referees and
the associate editor for their insightful comments and
suggestions. This work was supported by NSF (CNS-
1404677, IIS-1404673, DGE-1433659, CNS-1355505), Eu-
ropean Commission (FP7 Project SEGRID), Italian Min-
istry of Education, University and Research (PRIN Project
TENACE), and University of Pisa (PRA 2015 program).

REFERENCES
[1] A. D. Wood, J. A. Stankovic and G. Zhou. DEEJAM: Defeating

Energy-Efficient Jamming in IEEE 802.15.4-based Wireless Net-
works. In Proceedings of the 4th Annual IEEE Communications
Society Conference on Sensor, Mesh and Ad Hoc Communications
and Networks, pages 60–69. IEEE Computer Society, June 2007.

14

[2] A. J. Menezes, P. C. van Oorschot and S. A. Vanstone. Handbook
of Applied Cryptography. CRC Press, 2001.

[3] A. Mpitziopoulos, D. Gavalas, C. Konstantopoulos and G. Pantziou.
A Survey on Jamming Attacks and Countermeasures in WSNs. IEEE
Communications Surveys Tutorials, 11(4):42–56, 2009.

[4] A. Proaño and L. Lazos. Packet-Hiding Methods for Preventing
Selective Jamming Attacks. IEEE Transactions on Dependable and
Secure Computing, 9(1):101–114, January/February 2012.

[5] C. Paar and J. Pelzl. Understanding Cryptography. Springer, 2010.
[6] D. De Guglielmo, G. Anastasi and M. Conti. A Localized Slot Allo-

cation Algorithm for Wireless Sensor Networks. In Proceedings of
the 12th IEEE Annual Mediterranean Ad Hoc Networking Workshop,
pages 89–96. IEEE Computer Society, June 2013.

[7] D. R. Raymond and S.F. Midkiff. Denial-of-Service in Wireless
Sensor Networks: Attacks and Defenses. IEEE Pervasive Computing,
7(1):74–81, January-March 2008.

[8] M. Doddavenkatappa, M. Chan, and A. Ananda. Indriya: A low-
cost, 3d wireless sensor network testbed. In Testbeds and Research
Infrastructure. Development of Networks and Communities, pages
302–316. Springer, 2012.

[9] A. Dunkels, B. Grönvall, and T. Voigt. Contiki-a lightweight and
flexible operating system for tiny networked sensors. In Local Com-
puter Networks, 2004. 29th Annual IEEE International Conference
on, pages 455–462. IEEE, 2004.

[10] E. Cole. Network Security Bible, 2nd Edition. Wiley, 2009.
[11] F. Ashraf, Y.-C. Hu and R.H. Kravets. Bankrupting the jammer in

WSN. In Proceedings of the IEEE 9th International Conference on
Mobile Adhoc and Sensor Systems, pages 317–325, October 2012.

[12] G. Dini and I. M. Savino. LARK: A Lightweight Authenticated
ReKeying Scheme for Clustered Wireless Sensor Networks. ACM
Transactions on Embedded Computing Systems, 10(4), 2011.

[13] G. Dini and M. Tiloca. HISS: a HIghly Scalable Scheme for group
rekeying. The Computer Journal, 56(4):508–525, November 2013.

[14] H. Mustafa, X. Zhang, Z. Liu, W. Xu and A. Perrig. Jamming-
Resilient Multipath Routing. IEEE Transactions on Dependable and
Secure Computing, 9(6):852–864, November 2012.

[15] IEEE Computer Society. IEEE Standard for Local and Metropolitan
Area Networks, Part 15.4: Low-Rate Wireless Personal Area Net-
works (LR-WPANs), September 2011.

[16] J. Schiller and S. Crocker. Randomness Requirements for Security.
Internet Engineering Task Force, Fremont, CA, USA, 2005.

[17] K. Birman. Guide to Reliable Distributed Systems. Building High-
Assurance Applications and Cloud-Hosted Services. Springer, 2012.

[18] K. Pelechrinis, C. Koufogiannakis and S. V. Krishnamurthy. Gaming
the Jammer: Is Frequency Hopping Effective? In Proceedings of the
7th int. conference on Modeling and Optimization in Mobile, Ad Hoc,
and Wireless Networks, pages 187–196. IEEE Press, June 2009.

[19] D. E. Knuth. The Art of Computer Programming, Volume 3: Sorting
and Searching, 2nd Edition. Addison Wesley Longman Publishing
Co., Inc., Redwood City, CA, USA, 1998.

[20] L. Lazos, S. Liu and M. Krunz. Mitigating Control-channel Jamming
Attacks in Multi-channel Ad Hoc Networks. In Proceedings of the
second ACM conference on Wireless network security, pages 169–
180. ACM, March 2009.

[21] M. Cagalj, S. Capkun and J.-P. Hubaux. Wormhole-Based Antijam-
ming Techniques in Sensor Networks. IEEE Transactions on Mobile
Computing, pages 100–114, January 2007.

[22] M. Tiloca, D. De Guglielmo, G. Dini and G. Anastasi. SAD-SJ:
a Self-Adaptive Decentralized Solution Against Selective Jamming
Attack in Wireless Sensor Networks. In Proceedings of the 18th
IEEE International Conference on Emerging Technology & Factory
Automation, pages 1–8. IEEE Computer Society, September 2013.

[23] J. Misra and D. Gries. A constructive proof of vizing’s theorem.
Information Processing Letters, 41(3):131–133, 1992.

[24] R. Daidone, G. Dini and M. Tiloca. On Experimentally Evaluating
the Impact of Security on IEEE 802.15.4 Networks. In Proceedings
of International Conference on Distributed Computing in Sensor
Systems and Workshops, pages 1–6, June 2011.

[25] R. Daidone, G. Dini and M. Tiloca. A Solution to the GTS-based
Selective Jamming Attack on IEEE 802.15.4 Networks. Wireless
Networks, 20(5):1223–1235, November 2013.

[26] R. J. Anderson. Security Engineering: A Guide to Building Depend-
able Distributed Systems, 2nd Edition. Wiley, 2008.

[27] R. L. Pickholtz, D. L. Schilling and L. B. Milstein. Theory of
Spread-Spectrum Communications - A Tutorial. IEEE Transactions
on Communications, 30(5):855–884, May 1982.

[28] R. Sokullu, I. Korkmaz and O. Dagdeviren. GTS Attack: An IEEE
802.15.4 MAC Layer Attack in Wireless Sensor Networks. Int.l
Journal On Advances in Internet Technologies, 2(1):104–114, 2009.

[29] S. Rafaeli and D. Hutchison. A Survey of Key Management for
Secure Group Communication. ACM Computing Surveys, 35(3):309–
329, September 2003.

[30] S. Stojanovski and A. Kulakov. Efficient Attacks in Industrial
Wireless Sensor Networks. In ICT Innovations 2014, volume 311
of Advances in Intelligent Systems and Computing, pages 289–298.
Springer International Publishing, 2015.

[31] T. Verhoeff. Reward Variance in Markov Chains: A Calculational
Approach. In Proceedings of Eindhoven FASTAR Days 2004.
Technische Universiteit Eindhoven, September 2004.

[32] Texas Instruments. CC2420 2.4 GHz IEEE 802.15.4 / ZigBee ready
RF Transceiver. http://focus.ti.com/lit/ds/symlink/cc2420.pdf, 2012.

[33] W. Xu, K. Ma, W. Trappe and Y. Zhang. Jamming Sensor Networks:
Attack and Defense Strategies. IEEE Network, 20(3):41–47, 2006.

[34] W. Xu, T. Wood, W. Trappe and Y. Zhang. Channel Surfing and
Spatial Retreats: Defenses Against Wireless Denial of Service. In
Proceedings of the 3rd ACM Workshop on Wireless Security, WiSe
’04, pages 80–89. ACM, October 2004.

[35] W. Xu, W. Trappe and Y. Zhang. Channel Surfing: Defending
Wireless Sensor Networks from Interference. In Proceedings of the
6th International Conference on Information Processing in Sensor
Networks, pages 499–508. ACM, April 2007.

[36] W. Xu, W. Trappe, Y. Zhang and T. Wood. The Feasibility of
Launching and Detecting Jamming Attacks in Wireless Networks.
In Proceedings of the 6th ACM International Symposium on Mobile
ad hoc Networking and Computing, pages 46–57. ACM, May 2005.

[37] Z. Lu, W. Wang and C. Wang. Modeling, Evaluation and Detection
of Jamming Attacks in Time-Critical Wireless Applications. IEEE
Transactions on Mobile Computing, 13(8):1746–1759, August 2014.

Marco Tiloca is a Senior Researcher at SICS Swedish ICT AB,
Sweden. His research interests include network and communication
security, Internet of Things, key management and attack simulation.
Domenico De Guglielmo is a Postdoctoral Researcher in the Dept.
of Information Engineering at the University of Pisa. His research
interests are in the field of WSNs and Internet of Things.
Gianluca Dini is an Associate Professor in the Dept. of Information
Engineering at the University of Pisa. His research interests are in
the field of distributed computing systems, with particular reference
to security. He has published 100+ papers and has participated in
many projects funded by the Commission of the European Commu-
nity, the Italian Government and private companies.
Giuseppe Anastasi is a Full Professor at the Dept. of Information
Engineering at the University of Pisa, Italy. He is also the Director
of the CINI National Smart Cities Lab. His research interests include
pervasive computing, sensor networks, sustainable computing, and
ICT or smart cities. He has contributed to many research programs
funded by both national and international institutions. He has co-
edited two books and published more than 120 papers in interna-
tional journal and conferences. Dr. Anastasi is an Associate Editor of
Sustainable Computing, and Pervasive and Mobile Computing.
Sajal K. Das is the Chair of Computer Science Department and
Daniel St. Clair Endowed Chair at the Missouri University of Science
and Technology. During 2008-2011, he served the US National Sci-
ence Foundation as a Program Director in the Computer Networks
and Systems Division. During 1999-2013 he was a University Dis-
tinguished Scholar Professor of Computer Science and Engineering,
and founding director of Center for Research in Wireless Mobility
and Networking (CReWMaN) at the University of Texas at Arlington.
His current research interests include wireless and sensor networks,
mobile and pervasive computing, cyber-physical systems and smart
environments including smart health care and smart grid, security
and privacy, distributed and cloud computing, biological and social
networks, applied graph theory and game theory. He has published
over 600 papers in high quality journals and peer-reviewed confer-
ences, and 51 book chapters. He has also coauthored four books
and holds 5 US patents. Dr. Das is a recipient of the IEEE Computer
Society Technical Achievement Award for pioneering contributions
in sensor networks and mobile computing. He is the Founding
Editor-in-Chief of Elsevier’s Pervasive and Mobile Computing (PMC)
journal, and an Associate Editor of IEEE Transactions on Mobile
Computing, ACM Transactions on Sensor Networks, ACM/Springer
Wireless Networks, Journal of Parallel and Distributed Computing,
and Journal of Peer-to-Peer Networking and Applications. He is a
Fellow of the IEEE.

15

APPENDIX

A. Optimized random permutation

In Section 4, we considered the Knuth shuffle algorithm
to perform a random permutation of slots assigned to
active sensor nodes at each superframe. Here we present
an optimized permutation function for transmitter-only
nodes, namely permute no vec(). As shown in Algorithm
5, a generic node u, currently using the i-th slot in the
superframe to transmit data to its parent node, invokes
permute no vec() providing i as input argument. The func-
tion returns the index of the slot to be used in the next
superframe. It does not rely on any actual vector, thus
saving a considerable amount of memory. This is extremely
important when dealing with resource constrained devices
such as sensor nodes.
1. int permute_no_vec(unsigned old_index){

2. unsigned i;

3. unsigned n;

4. unsigned new_index = old_index;

5. for (i = N - 1; i >= 0; i--) {

6. n = random() % (i + 1);

7. if (i == new_index)

8. new_index = n;

9. else if (n == new_index)

10. new_index = i;

11. // else new_index = new_index;

12. }

13. return new_index;

14. }

Algorithm 5: permute no vec function.

B. Proof of Claim 1

Claim 1. The SSP algorithm maintains the Uniqueness
and Collision-Free properties at each superframe.

Proof: As to the Uniqueness Property, the SSP algo-
rithm simply permutes the permutation vector elements.
So only one element of the resulting permutation vector
contains the value 1 and thus the property is maintained.

As to the Collision-Free Property, let us define L =
(L1, . . . , LN

) where L

i

is the set of non-interfering links
that use slot s

i

in the current superframe. Consider a
link (u, t) 2 L

i

such that, to fix ideas, v

u

[i] = 1 and
v

t

[i] = 2. Let ⇧ be the same permutation that u and t

compute at the end of the current superframe, and v

0
u

and
v

0
t

be the vectors resulting from applying ⇧ to v

u

and v

t

,
respectively. Finally, assume that ⇧ maps the i-th element
into the j-th. It follows that v

0
u

[j] = 1 and v

0
t

[j] = 2,
that is, link (u, t) becomes active during slot s

j

in the next
superframe. As all nodes compute the same permutation ⇧,
then all links using slot s

i

during the current superframe
will be active during slot s

j

in the next superframe. This
means that L

i

is permuted into L

j

. More generally, this
means that permutation ⇧ randomly permutes elements in
L. As a consequence, every slot of the superfame becomes
associated with a different set of non-interfering links.
Therefore, the Collision-Free Property is maintained.

C. Proofs of Claims 2 and 3

Claim 2.

P

F

s

(M) = M ·
WB�1X

w=0

✓
1

W

B

◆
·
✓
W

B

� 1� w

W

B

◆
M�1

(3)

P

F

c

(k |M) =

✓
M

k

◆
WB�1X

w=0

✓
1

W

B

◆
k

·
✓
W

B

� 1� w

W

B

◆
M�k

(4)
P

F

b

(h | M) = P

F

c

(M � h | M) (5)

Proof: Let us first consider Equation 3. A successful
transmission occurs when one joining node generates a
backoff time shorter than the one of all the other (M � 1)
contending nodes. Given W

B

the backoff window size,
every node can extract a backoff w 2 {0, 1, ..., W

B

�1} ·
D

bo

. Hence, Equation 3 can be explained as follows. For
every possible backoff time w that can be generated by a
joining node with probability 1

WB
, the second term inside

the sum is the probability that the remaining (M�1) sensor
nodes extract a backoff time larger than w. Then, all M

combinations, corresponding to the different sensor nodes,
are considered.

Let us now consider Equation 4, i.e. the case where two
or more joining nodes generate the same backoff time, thus
starting their transmission at the same time and experienc-
ing collision. In Equation 4, for every possible backoff time
w, the term inside the sum gives the probability that k

joining nodes randomly pick up a value equal to w, and
(M � k) sensor nodes choose a value larger than w. Of
course, all

�
M

k

�
possible combinations are considered.

Finally, we consider Equation 5, i.e. the case when h =
(M � k) nodes find the channel busy. Since h nodes have
found the channel busy, (M � h) nodes have extracted the
same (minimum) backoff value, and collided. Therefore,
P

F

b

(h | M) = P

F

c

(M � h | M).
Claim 3.
E

s

(M) = M ·P
RX

·D
CS

+P

TX

·D
tx

+P

RX

·D
ack

(6)
E

c

(k | M) = M ·P
RX

·D
CS

+k · (P
TX

·D
tx

+P

RX

·D
to

)
(7)

E

u

= P

TX

·D
tx

+ P

RX

·D
ack

(8)

Proof: Let us focus on Equation 6 that provides the
total energy spent by nodes when one of the M joining
nodes wins the contention. The first term in Equation 6
accounts for the energy consumed by all the M joining
nodes to perform their channel sensing operation, while the
other terms account for the additional energy consumed by
the winner node for transmitting the packet (P

TX

· D
tx

)
and receiving the ACK (P

RX

·D
ack

).
Equation 7 is derived by following the same line of

reasoning. Hence, we omit its description. Finally, let us
focus on Equation 8 that provides the energy E

u

spent
by a sensor node during an acquired slot. E

u

is derived
accounting for both the energy due to the transmission of
the data packet and the energy spent to receive the ACK
packet.

16

D. Derivation of the Discrete Time Markov Chain
In this section, we describe the derivation of the Discrete
Time Markov Chain (DTMC) that models the JAMMY join
procedure. First, we derive the DTMC in a simple scenario.
Specifically, we consider the case when the superframe is
composed of N = 3 slots, 1 slot is acquired (i.e. N

A

= 1),
and N

j

= 2 nodes start their join procedure at T
j

. Then,
in Section D.2, we derive the DTMC for arbitrary values
of N , N

A

, and N

j

.

D.1 Markov Chain Derivation in a Simple Scenario
With reference to the considered example scenario, the
initial system state is X

j

= [2, 0, 0], i.e., the two joining
nodes start contending for the first slot of superframe T

j

(see Figure 9). Then, the system can evolve in different
states, depending on both the slot utilization pattern at
superframe T

j

, i.e., S
j

, and the specific events that occur
during the contention for each slot in T

j

. To properly model
the evolution of the system we have to consider all possible
slot utilization patterns S

j

at superframe T

j

. Since there is
a single acquired slot at T

j

, the possible slot utilization
patterns are S

1
j

= [A, F, F], S

2
j

= [F, A, F] and
S

3
j

= [F, F, A] where F (A) indicates a free (acquired)
slot. Also, since the different slot utilization patterns are due
to the SSP algorithm (Algorithm 2), all patterns have the
same probability to occur which implies P (S1

j

) = P (S2
j

) =
P (S3

j

) = 1
3 .

[2 0 0] [0 2 0]

[0 0 2][1 0 0]

[0 0 0]

)2|2(
3

2 F
cP

)2|2(
3

2 F
cP

)2|2(
3

1 F
cP

)2(
3

1 F
sP)2(F

sP

)2(
3

2 F
sP

)2(
3

2 F
sP

3

1

1

1

)2|2(
3

2 F
cP

Fig. 9: Markov chain for N = 3, N
A

= 1, N
j

= 2.

Let us assume S

j

= S

1
j

= [A, F, F]. In this case,
the two joining nodes contend for the first slot of the
superframe, which is already used by an active node. Hence,
they lose contention and, according to Algorithm 3, they
have to retry at the second slot. Then, there are two possible
evolutions for the system, depending on the specific event
that occurs at the second slot. In case of a collision between
the two sensor nodes, which occurs with a probability equal
to P

F

c

(2 | 2), the system at superframe T

j+1 will be in
state [0, 2, 0], since the two nodes will retry to contend
for the second slot (Assumption 3). Instead, if one of the
two joining nodes wins the contention at the second slot,
which occurs with probability P

F

s

(2), it becomes the owner
of the slot and ends the join procedure. Hence, starting
from superframe T

j+1, it has to be considered as an active
node. The sensor node which loses the contention at the
second slot, retries to contend for the third slot. Since we
are assuming S

j

= [A, F, F], the third slot is free. Hence,

it surely wins the contention and ends the join procedure.
Thus, the system state, at T

j+1, will be [0, 0, 0], i.e., all
joining nodes have found their slot and have completed the
join procedure.

Let us now consider the case S

j

= S

2
j

= [F, A, F]. In
this case there are two possible transitions for the system.
The state of the system could remain the same, i.e., X

j+1 =
X

j

= [2, 0, 0], or the system could evolve in state X

j+1 =
[0, 0, 0]. Since the first slot is free in this case, the first
transition occurs when the two joining nodes experience a
collision at the first slot, which happens with probability
P

F

c

(2 | 2). Instead, the second transition happens when a
success occurs in the first slot with probability P

F

s

(2).
Finally, let us analyze the last case, i.e. S

j

= S

3
j

=
[F, F, A]. The possible transitions for the system are the
same as in the previous case implying the system could
transit to state [2, 0, 0], with probability P

F

c

(2 | 2), or to
state [0, 0, 0] with probability P

F

s

(2). Figure 9 reports all
transitions of the system starting from state [2, 0, 0], along
with their probability. Note that the probability of each
transition also considers the probability of each possible
slot utilization pattern to occur.

Following a similar line of reasoning, we can derive
all possible transitions that can occur when the system is
initially in state [0, 2, 0]. When the network is in this state,
there is only one acquired slot in the network, since all the
two joining nodes have not terminated their join procedure
yet. Hence, the possible equiprobable slot utilization pat-
terns S

m

are S

m

= [A, F, F], [F, A, F], [F, F, A]. As
shown in Figure 9, there are four possible transitions in this
case, namely [0, 2, 0] ! [0, 0, 0], [0, 2, 0] ! [0, 2, 0],
[0, 2, 0] ! [0, 0, 2], and [0, 2, 0] ! [1, 0, 0]. First, we
analyze the transition [0, 2, 0] ! [0, 0, 0]. This transition
occurs only when the second and third slots are free, i.e.,
S

m

= [A, F, F], and one of the two joining nodes
wins the contention with the other one at the second slot,
which happens with probability equal to P

F

s

(2). Hence,
the probability for transition [0, 2, 0] ! [0, 0, 0] to occur
is given by 1

3 · PF

s

(2). Transition [0, 2, 0] ! [0, 2, 0]
occurs when the second slot is free, i.e., S

m

= [A, F, F]
or [F, F, A], and a collision between the two joining nodes
occurs. Hence, this transition has a probability equal to
2
3 · PF

c

(2 | 2) to occur. Transition [0, 2, 0] ! [0, 0, 2]
occurs when the two joining nodes move from the second
to the third slot and, then, they experience a collision. This
is possible only if the second slot is acquired by an active
link, i.e., S

m

= [F, A, F]. Hence the transition has a
probability equal to 1

3 · PF

c

(2 | 2).
Finally, transition [0, 2, 0] ! [1, 0, 0] can occur in

two cases. The first one is when the second slot is acquired
by an active link, i.e., S

m

= [F, A, F], the two joining
nodes move to the third slot, and one of them wins the
contention for the third slot. The sensor node winning the
contention terminates the join procedure, acquires a slot and
becomes an active node. Instead, the sensor node losing
the contention retries to contend at the first slot of the
subsequent superframe. These events occur with probability
1
3 · PF

s

(2). The second situation which leads the system to

17

state [1, 0, 0] is when the second slot is free and the third
one is acquired by any active link, i.e., S

m

= [F, F, A],
and a success occurs at the second slot. In this case, one
joining node wins the contention and becomes an active
node while the other one tries to contend for the third slot.
Since the third slot is already acquired, the joining node
finds the channel busy and schedules a retry at the first slot
of the subsequent superframe.

Let us now analyze the transitions originating from state
[0, 0, 2]. There are three possible transitions in this case,
namely [0, 0, 2] ! [0, 0, 2], [0, 0, 2] ! [2, 0, 0], and
[0, 0, 2] ! [1, 0, 0]. The first transition occurs when the
third slot is free, i.e., S

m

= [A, F, F] or S
m

= [F, A, F]
and a collision between the two joining nodes occurs at the
third slot. The corresponding probability is 2

3 · PF

c

(2 | 2).
Transition [0, 0, 2] ! [2, 0, 0] is possible only when the
third slot is acquired. In fact, in this case, the two joining
nodes find the channel busy at the third slot and retry
to the first slot of the subsequent superframe. This event
has a probability equal to 1

3 to occur. The last transition
is [0, 0, 2] ! [1, 0, 0]. There are two conditions for
this transition to occur. First, the third slot has to be free,
i.e., S

m

= [A, F, F] or S

m

= [F, A, F]. Second, a
success has to occur at the third slot. Hence, the transition
probability is equal to 2

3 · PF

s

(2).
Let us turn our attention to state [1, 0, 0]. In this

case one of the two joining nodes has completed the join
procedure in a previous superframe. Hence, the possible
slot utilization patterns are S

m

= [A, A, F], [A, F, A],
and [F, A, A]. There is only one possible transition for
the system starting from state [1, 0, 0]. In fact, whatever
is the slot utilization pattern, the remaining joining node
will surely acquire a free slot in the current superframe.
Hence, the system evolves to state [0, 0, 0] with probability
equal to 1. Finally, when the system reaches state [0, 0, 0],
the join procedure is completed. Hence, the system will
never change its state; in other words state [0, 0, 0] is an
absorbing state.

Each transition described above is characterized by an
average energy consumed by joining sensor nodes. Figure
10 shows the average energy consumption associated with
each transition derived according to Equations 6 and 7. For
the sake of simplicity, we only explain the computation
of the average energy consumption for transitions origi-
nating from the inital state of the system, [2, 0, 0] !
[2, 0, 0], [2, 0, 0] ! [0, 2, 0], and [2, 0, 0] ! [0, 0, 0].
The average energy spent during all the other transitions
can be derived following the same line of reasoning.
Let us focus on the transition [2, 0, 0] ! [2, 0, 0].
As mentioned above, this transition occurs when the two
joining nodes experience a collision at the first slot of the
superframe. Hence, according to Equation 7, the average
energy consumption is equal to E

c

(2 | 2) in this case.
Transition [2, 0, 0] ! [0, 2, 0] occurs when: i) the
two joining nodes find the channel busy during the first
slot and move to the second slot, and ii) they experience
a collision. During the first slot the two nodes perform a
channel sensing operation. Hence, they spend an energy

equal to 2 ·E
CS

. Instead, the energy consumed due to the
collision at the second slot is equal to E

c

(2 | 2). Thus, the
energy consumption for this transition is 2·E

CS

+E

c

(2 | 2).
The last transition we consider is [2, 0, 0] ! [0, 0, 0]
which occurs when both joining nodes succeed in acquiring
a free slot during the superframe.

There are three different cases that cause this transition.
The first one happens when i) S

m

= [A, F, F] and ii)
two successes occur, one at the second slot and one during
the third slot. The energy spent in this case is equal to
2 · E

CS

+ E

s

(2) + E

s

(1) since the two nodes sense the
channel during the first slot and there are two successful
events. Also, the probability for this case to occur is equal
to 1

3 ·PF

s

(2). The second case is when S

m

= [F, A, F] and
two successful transmissions occur, one at the first slot and
one at the third slot. Hence, the energy spent by the joining
nodes is equal to E

s

(2) + E

CS

+ E

s

(1). The probability
of this case to occur is 1

3 · PF

s

(2). The last case happens
when S

m

= [F, F, A] and two successes occur, one at the
first and one at the second slot. The energy spent in this
case is equal to E

s

(2)+E

s

(1) while the probability for the
case to occur is 1

3 · PF

s

(2). As it can be observed all the
three cases have the same probability to occur. Hence, we
can calculate the average energy consumption simply by
performing an arithmetic mean of the energies spent in the
three different cases. Thus, the average energy consumption
for this transition is equal to E

s

(2) + E

s

(1) + E

CS

.

[2 0 0] [0 2 0]

[0 0 2][1 0 0]

[0 0 0]

)2|2(cE

)2|2(2
cCS

EE +

)2|2(cE

)2|2(2
cCS

EE +

)2|2(cE

)1(

)2(

s

s

E

E

+

)2(sE

CS
E2

uE2

CSss
EEE ++)1()2(

CS

s

u

E

E

E

+

+

)1(

2

)2(23
sCS

EE +

Fig. 10: Energy consumptions for N = 3, N
A

= 1, N
j

= 2.

D.2 Markov Chain Derivation in the General Case

In the previous section, we derived a DTMC for the simple
case when the superframe consists of N = 3 slots. In
this section, we derive the DTMC model in the general
case - for any values of N , N

A

, N
j

. Specifically, we first
define a generate states() function, used to generate all
possible states of the DTMC. To this end, we refer to the
event probabilities derived in Section 8.1. Then, we rely on
generate states() to derive the DTMC.

We recall that we observe the system at the beginning of
every superframe T

m

. Specifically, we represent the system
state as a vector X

m

= [n1, n2, ..., n

N

], where element
n

i

refers to the i-th slot, namely s

i

, of T

m

. Specifically,
n

i

indicates the number of joining nodes that directly try
contention at slot s

i

. Since we consider the presence of
N

j

joining nodes, we have n

i

 N

j

, 8 i. In the following,
we refer to T

j

as the superframe at which joining nodes
start to execute the slot acquisition process, and N

A

as the

18

number of acquired slots at the beginning of superframe
T

j

. Also, we define S

m

= [s1, s2, ..., s

N

] as the slot
utilization pattern at the beginning of a given superframe
T

m

. Specifically, s
i

indicates the status of slot s

i

, i.e., if
it is either free (F) or acquired (A). Of course, superframe
T

j

features N

A

slots whose status is A.
Initially, the system state is X

j

= [N
j

, 0, ..., 0], imply-
ing all joining nodes have scheduled their transmission at
the first slot of superframe T

j

. Then, the system can evolve
in different states, depending on both the slot utilization
pattern S

j

and the specific events that occur during the
contention for each slot.

State Generation
Algorithm 6 provides details of the function
generate states (X

m

, S

m

). Such a function takes
two parameters as input (line 1), namely X

m

and S

m

,
that represent the network state and the slot utilization
pattern, at the beginning of superframe T

m

, respectively.
It returns a set G

XmSm of transition vectors, each of
which includes the following three fields:
• X

m+1 = [n1, n2, ..., n

N

] represents one of the possible
states where the network can evolve to from superframe
T

m

to superframe T

m+1, starting from state X

m

and slot
utilization pattern S

m

.
• p

XmXm+1 is the probability that the system changes its
state from X

m

to X

m+1, given the S

m

slot utilization
pattern at superframe T

m

.
• e

XmXm+1 is the energy consumed by all joining nodes
when the system changes its state from X

m

to X

m+1, given
the S

m

slot utilization pattern at superframe T

m

.
In practice, the function generate states() produces

G

XmSm , i.e., the set of all possible states X

m+1 where the
system can evolve to from state X

m

and slot utilization
pattern S

m

. For each X

m+1, the transition probability
p

XmXm+1 and the energy consumption e

XmXm+1 are also
reported.

Initialization. The function generate states() relies on
an iterative approach to generate all possible transition

vectors. First of all, generate states() creates and ini-
tializes transition init (lines 2-7). Specifically, init.X

m+1

is set to X

m

, while init.p

XmXm+1 is set to 1, since no
events have been considered yet. Instead, init.e

XmXm+1

assumes an initial value equal to E

u

· (N
j

�
NP
i=1

X

m

[i]),

where E

u

is the energy spent by joining nodes that have
already completed their join procedure. Since there are
N

j

= N

F

joining nodes at superframe T

j

, the number
of joining nodes that have already completed their join

procedure can be calculated as N

j

�
NP
i=1

X

m

[i]. Then,

transition init is added to the set ⌦0. In general, ⌦
i

for
1 i N , represents the set of transitions generated by
generate states() after examining i slots in the current
superframe. During slot s

i

for 1 i N , the function
generate states() considers all transitions ! 2 ⌦

i�1

(lines 8-9). In case no joining nodes are contending slot
s

i

, the current transition is skipped, and the next one is

1: G

XmSm generate states (X
m

, S

m

)
2: transition init //Initialization
3: init.X

m+1 = X

m

4: init.p

XmXm+1 = 1

5: init.e

XmXm+1 = E

u

· (N
j

�
NP
i=1

X

m

[i])

6: ⌦0 = ;
7: ⌦0 = ⌦0 [init

8: for i in 1 ... N
9: for each ! 2 ⌦

i�1

10: if !.X
m+1[i] = 0 then

11: transition gen = !

12: ⌦
i

= ⌦
i

[gen

13: continue
14: end if
15: if s

i

2 S

m

= A then // Acquired slot
16: transition gen = !

17:

gen.X

m+1[(i+ 1)%N] =

!.X

m+1[(i+ 1)%N] + !.X

m+1[i]

18: gen.X

m+1[i] = 0
19: gen.p

XmXm+1 = !.p

XmXm+1 · 1
20: gen.e

XmXm+1 = !.e

XmXm+1 +!.X

m+1[i] ·ECS

21: ⌦
i

= ⌦
i

[gen

22: end if
23: if s

i

2 S

m

= F then // Free slot
24: transition gen = ! // Success
25:

gen.X

m+1[(i+ 1)%N] =

!.X

m+1[(i+ 1)%N] + !.X

m+1[i]� 1

26: gen.X

m+1[i] = 0
27: gen.p

XmXm+1 = !.p

XmXm+1 · PF

s

(!.X
m+1[i])

28: gen.e

XmXm+1 = !.e

XmYm+1 + E

s

(!.X
m+1[i])

29: ⌦
i

= ⌦
i

[gen

30: for k = 2 to !.X

m+1[i] // Collision
31: transition gen = !

32:

gen.X

m+1[(i+ 1)%N] =

!.X

m+1[(i+ 1)%N] + (!.X
m+1[i]� k)

33: gen.X

m+1[i] = k

34:
gen.p

XmXm+1 = !.p

XmXm+1 · PF

c

(k | !.X
m+1[i])

35:
gen.e

XmXm+1 = !.e

XmXm+1 + E

c

(k | !.X
m+1[i])

36: ⌦
i

= ⌦
i

[gen

37: end for
38: end if
39: end for
40: end for
41: return G

XmSm = ⌦
N

42: end function
Algorithm 6: Function generate states()

19

considered (lines 10-14). Otherwise, it behaves differently
depending on whether slot s

i

is acquired (A) or free (F).
Acquired Slot. First, let us consider the case when slot

s

i

is acquired (lines 15-22). In such a case, all nodes con-
tending for slot s

i

find the channel busy while performing
their carrier sense operation and, thus, schedule a retry at
the next slot s

i+1. Then, for each transition ! 2 ⌦
i�1,

a new transition gen = ! is created (line 16), and the
following operations are performed (lines 17-21).
1) All the !.X

m+1[i] nodes contending for slot s
i

retry at
the next slot s

i+1, during which other !.X
m+1[(i+1)%N]

nodes are going to contend. Therefore

gen.X

m+1[(i+ 1)%N] =

!.X

m+1[(i+ 1)%N] + !.X

m+1[i] (13)
2) No nodes remain on slot s

i

, then
gen.X

m+1[i] = 0 (14)
3) All contending nodes retry at the next slot for sure, hence
the overall transition probability does not change, that is

gen.p

XmXm+1 = !.p

XmXm+1 · 1 (15)
4) All the !.X

m+1[i] nodes perform a channel sensing
during slot s

i

. Hence, the overall energy consumed by
joining nodes during slot s

i

is equal to !.X

m+1[i] · ECS

.
More formally, we have
gen.e

XmXm+1 = !.e

XmXm+1 + !.X

m+1[i] · ECS

(16)
5) Finally, being a possible transition state generated at slot
s

i

, gen is added to the set ⌦
i

, that is
⌦

i

= ⌦
i

[gen (17)
Free Slot. Now we consider the case when slot s

i

is free
(F) (lines 23-39). In such a case, different kinds of events
can occur during the contention for slot s

i

. Specifically,
for each ! 2 ⌦

i�1, the algorithm considers all the events
that can occur at slot s

i

in the presence of !.X

m+1[i]
sensor nodes trying to access it. Thus, there are exactly
!.X

m+1[i] events to be considered, that can be classified
into two different classes, namely success and defeat. The
former regards the cases when only one sensor node wins
the contention and successfully transmits its packet at slot
s

i

, while all other sensor nodes find the channel busy. The
latter refers to the cases when two or more sensor nodes
experience a collision at slot s

i

, while the remaining ones
find the channel busy.

Success. First, let us focus on the case when one of the
!.X

m+1[i] contending sensor nodes successfully transmits
its packet (lines 24-29). Then, a new transition gen = ! is
created, and the following operations are performed.
1) All nodes contending slot s

i

but one (i.e., !.X
m+1[i]�

1), retry at the next slot s

i+1, during which other
!.X

m+1[(i+ 1)%N] nodes are going to contend. Hence,

gen.X

m+1[(i+ 1)%N] =

!.X

m+1[(i+ 1)%N] + (!.X
m+1[i]� 1) (18)

2) The !.X

m+1[i]� 1 nodes that have lost the contention
at slot s

i

, retry at the next slot s
i+1, whereas the winner

node terminates its own join procedure. Thus, no joining
nodes remain in slot s

i

, then
gen.X

m+1[i] = 0 (19)

3) We need to consider both i) the probabilities of all events
occurred before slot s

i

, which is !.p

XmXm+1 ; and ii) the
probability of the specific event happened during slot s

i

,
which is P

F

s

(!.X
m+1[i]). Thus,

gen.p

XmXm+1 = !.p

XmXm+1 · PF

s

(!.X
m+1[i]) (20)

4) In the presence of !.X

m+1[i] contending nodes, the
overall energy consumed by joining nodes is equal to
E

s

(!.X
m+1[i]). Hence, we have

gen.e

XmXm+1 = !.e

XmXm+1 + E

s

(!.X
m+1[i]) (21)

5) Finally, being a possible transition state generated at slot
s

i

, we add gen to the set ⌦
i

such that
⌦

i

= ⌦
i

[gen (22)
Collision. Now we consider the case when two ore more

sensor nodes experience a collision at slot s
i

(lines 30-37).
For each possible number of colliding nodes k, 2 k
!.X

m+1[i], a new transition gen = ! is created, and the
following operations are performed.
1) All nodes that have found the medium busy, i.e.
!.X

m+1[i] � k, retry at the next slot s

i+1 (according to
Algorithm 3), during which other !.X

m+1[(i + 1)%N]
nodes are going to contend. Hence,

gen.X

m+1[(i+ 1)%N] =

!.X

m+1[(i+ 1)%N] + (!.X
m+1[i]� k) (23)

2) All the k colliding nodes remain in slot s
i

, then
gen.X

m+1[i] = k (24)
3) We have to consider both i) the probabilities of all events
occurred before slot s

i

, i.e. !.p
XmXm+1 ; and ii) the proba-

bility that k sensor nodes out of the !.X

m+1[i] contending
ones collide with one another, i.e. P

F

c

(k | !.X

m+1[i]).
Hence,
gen.p

XmXm+1 = !.p

XmXm+1 · PF

c

(k | !.X
m+1[i]) (25)

4) In the presence of !.X

m+1[i] contending nodes, k of
which collide, the overall energy consumed by the joining
nodes is equal to E

c

(k | !.X
m+1[i]). Thus, we have

gen.e

XmYm+1 = !.e

XmYm+1 + E

c

(k | !.X
m+1[i]) (26)

5) Finally, being a possible transition state generated at slot
s

i

, gen is added to the set ⌦
i

, that is
⌦

i

= ⌦
i

[gen (27)
Epilogue. As it can be observed, when all the N slots

in the superframe have been examined, the set ⌦
N

con-
tains all possible states X

m+1 reachable from state X

m

,
in the presence of a slot utilization pattern S

m

. Thus,
generate states() assigns ⌦

N

to the set G

XmSm , and
returns it (line 41). Note that it is possible that two different
transitions in G

XmSm contains the same X

m+1. This is
because, in general, state X

m+1 can be reached from state
X

m

in different ways, depending on the particular events
occurred during superframe T

m

.

Derivation of the DTMC
Algorithm 7 details the function generate DTMC(N

j

, N

A

)
that takes two parameters as input, namely N

j

and N

A

,
the number of joining nodes and the number of already
acquired slots, respectively (line 1). The function returns a

20

1: (P,E) generate DTMC (N
j

, N

A

)
2: Unprocessed = ;
3: Examined = ;
4: F = ;
5: X

j

= [N
j

, 0, ..., 0]
6: Unprocessed = Unprocessed [X

j

7: while(Unprocessed! = ;)
8: extract X

m

from Unprocessed

9: Examined = Examined [X

m

10: n

j

=
NP
i=1

X

m

[i]

11: for each S

m

: |i : S
m

[i] = A| = N

A

+N

F

� n

j

12: G

XmSm = generate states(X
m

, S

m

)
13: for each g 2 G

XmSm

14: if g.X
m+1 62 Unprocessed ^

g.X

m+1 62 Examined

15: Unprocessed = Unprocessed [g.X

m+1

16: end if
17: g.p

XmXm+1 = g.p

XmXm+1 · 1

(N
NA+NF �nj

)
18:

F.insert({X
m

, g.X

m+1, g.pXmXm+1 , g.eXmXm+1})
19: end for
20: end for
21: end while
22: P = []
23: E = []
24: for each X

m

2 Examined

25: for each f in F : f.X
m

= X

m

26: P

XmXm+1+ = f.p

XmXm+1

27: end for
28: end for
29: for each X

m

2 Examined

30: for each f in F : f.X
m

= X

m

31: E

XmXm+1+ = f.e

XmXm+1 ·
f.pXmXm+1

PXmXm+1

32: end for
33: end for
34: return (P,E)
35: end

Algorithm 7: Function generate DTMC()

pair of matrices (P,E). In particular, P is the transition
probability matrix, and each element P

XY

indicates the
probability that the system state changes from X to Y .
Instead, matrix E indicates the energy consumption of
joining nodes. Specifically, each element E

XY

represents
the average energy consumed by joining nodes when the
network state changes from X to Y .

The generate DTMC() function mainly relies on the
following three sets.
• Unprocessed, a set including all the states that are still
to be examined.
• Examined, the set including all network states that have
been already examined.
• F : a list of elements f =
{X

m

, X

m+1, p

XmXm+1 , e

XmXm+1}, each one of
which represents one of the possible transitions from
a given state X

m

to state X

m+1. In particular, f is
composed of four elements. X

m

and X

m+1 are the

initial and final state of transition f , respectively. Instead,
p

XmXm+1 and e

XmXm+1 are the occurrence probability of
transition f , and the energy spent by joining nodes during
f , respectively.

Initially, the above mentioned sets are created and ini-
tialized (lines 2-4). Also, vector X

j

= [N
j

, 0, ..., 0],
representing the network state at superframe T

j

, is cre-
ated and added to set Unprocessed (lines 5-6). The join
procedure terminates when there are no joining nodes that
have still not acquired a slot, i.e. the network state is
X

f

= [0, 0, ..., 0].

Then, the function performs a while loop (lines 7-21),
that ends when there are no more states to be analyzed,
i.e. when Unprocessed = ;. At each step of the loop, one
element X

m

is extracted from Unprocessed (line 8), and
added to Examined (line 9). Thereafter, generate DTMC()
generates all possible states X

m+1 where the network may
evolve to from state X

m

at a given superframe T

m

. The
goal is to derive, for every pair {X

m

, X

m+1}, both the
probability P

XmXm+1 that the system state changes from
X

m

to X

m+1, and E

XmXm+1, i.e. the average energy
consumed by joining nodes when such a transition occurs.
In order to do that, all the possible slot utilization patterns
S

m

= [s̄1, s̄2, ..., s̄N] at superframe T

m

are considered (line
11). Since i) the network state at superfame T

m

is X

m

; ii)
there were exactly N

A

acquired slots when the join proce-
dure started; and iii) we have supposed that the number of
joining nodes N

j

= N

F

, then the number of acquired slots
at a given superframe T

m

is equal to N

A

+N

F

�n

j

, where

n

j

=
NP
i=1

X

m

[i]. Specifically, such a formula calculates the

total number of acquired slots at the beginning of T

m

,
by subtracting the number of joining nodes that are still

competing to acquire a slot, i.e. n
j

=
NP
i=1

X

m

[i], from the

total number of slots in the superframe, i.e. N =N

A

+N

F

.
Having said that, a slot utilization pattern S

m

is consid-
ered if and only if it satisfies the following condition:
S

m

: |{i 2 [1, ..., N] : S
m

[i] = A}| = N

A

+ N

F

� n

j

,
where |{·}| indicates the cardinality of a given set. That is,
considered slot utilization patterns are such that the number
of acquired slots is equal to N

A

+N

F

� n

j

. So doing, the
function generate states() is invoked for each considered
pair {X

m

, S

m

} (line 12). Such a function returns G

XmSm ,
i.e. the set of all possible transitions that can occur given the
network state X

m

and the slot utilization pattern S

m

. Then,
for each transition g 2 G

XmSm , the following operations
are performed. First, if state g.X

m+1 is neither in the
set Unprocessed nor in the set Examined, it is added to
Unprocessed, since it still has to be analyzed (lines 14-
16). Second, the probability g.p

XmXm+1 , i.e. the probability
that transition g occurs, is multiplied by P (S

m

| X

m

),
i.e. the probability that the slot utilization pattern is S

m

at the beginning of T

m

, given the network state X

m

(line 17). This is because the probability g.p

XmXm+1 is
computed considering a specific slot utilization pattern S

m

at superframe T
m

. Specifically, the probability P (S
m

|X
m

)

21

is equal to 1/
�

N

NA+NF�nj

�
where n

j

=
NP
i=1

X

m

[i]. In

fact, the number of possible slot utilization patterns S

m

at superframe T

m

is equal to
�

N

NA+NF�nj

�
and all slot

utilization patterns S

m

are equiprobable. Finally, the tuple
{X

m

, g.X

m+1, g.pXmXm+1 , g.eXmXm+1} is added to list
F (line 18). Once the analysis has been completed, set
Examined contains all possible system states X

m

. Also, list
F contains all possible transitions from a given state X

m

to
any other state X

m+1. Then, generate DTMC() computes
matrix P (lines 24-28). Specifically, the probability to
reach state Y 2 Examined from state X 2 Examined

is computed by considering all elements f in F such
that f.X

m

= X ^ f.X

m+1 = Y . More specifically, the
probability to reach state XY from state X , i.e. P

XY

, is
calculated as:

P

XY

=
X

f :f.Xm=X^f.Xm+1=Y

f.p

XmXm+1 (28)

Finally, the matrix E is computed (lines 29-33). Specifi-
cally, the average energy spent by joining nodes when the
network state changes from X to Y , i.e. E

XY

, is calculated
as:

E

XY

=
X

f :f.Xm=X^f.Xm+1=X

f.e

XmXm+1 ·
f.p

XmXm+1

P

XY

(29)
That is, E

XY

is calculated as the weighted sum of energies
f.e

XmXm+1 spent by joining nodes during each possible
transition f . As weight for each f , we consider

f.pXmXm+1

PXY
,

i.e. the probability that the specific transition f occurs,
given an occured transition from X to Y .

E. Analysis of the Centralized Solution
In Section 8 we derived formulas to compute the overhead
due to the JAMMY join procedure. Let us now consider the
overhead of the join process when the centralized solution
is used. We assume that each joining node transmits an
association message to the Coordinator node, in order to
join the network. We further assume that all association
messages are successfully transmitted to the Coordinator
node during superframe T

j

, i.e., the joining process is
completed in one single superframe. It follows that, starting
from superfame T

j+1, all joining nodes receive the slot
utilization pattern by the Coordinator node and, hence,
are fully operative. We want to point out that this is an
optimistic assumption since joining nodes have typically to
compete with each other to access the medium and transmit
their association messages. Hence, the joining process may
require more than one superframe to be completed.

The energy E

C

k

consumed by the joining nodes during
superframe T

j+k

, k � 0, when the centralized solution is
used, can be calculated according to the following equation.

E

C

k

=

⇢
N

j

· (P
TX

D

ass

) k = 0
N

j

· (P
TX

D

tx

+ P

RX

D

ack

+ P

RX

D

sup

) k > 0
(30)

where D

ass

and D

sup

are the time required to transmit
the association message and the slot utilization pattern,
respectively.

Equation 30 can be explained as follows. At superframe
T

j

(k = 0), the energy consumption is equal to N

j

· (P
TX

·
D

ass

) since the N

j

joining nodes transmit one association
message each. Conversely, from superframe T

j+1, every
joining node 1) receives the slot utilization pattern from
the Coordinator node, and 2) transmits its data packet and
receives the related acknowledgment. Hence, the total en-
ergy consumed by the N

j

joining nodes during superframe
T

j+k

, k > 0, is equal to N

j

·(P
TX

D

tx

+ P

RX

D

ack

)+N

j

·
(P

RX

D

sup

) where the first term is the energy due to the
data packet transmissions while the second term accounts
for the reception of the slot utilization pattern.

