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Abstract – Wireless Sensor Networks (WSNs) represent a very promising solution in the field of wireless technologies for 
industrial applications. However, for a credible deployment of WSNs in an industrial environment, four main properties 
need to be fulfilled, i.e., energy efficiency, scalability, reliability, and timeliness. In this paper we focus on IEEE 802.15.4 
WSNs and show that they can suffer from a serious unreliability problem. This problem arises whenever the power 
management mechanism is enabled for energy efficiency, and results in a very low packet delivery ratio, also when the 
number of sensor nodes in the network is very low (e.g., 5). We carried out an extensive analysis – based on both simulation 
and experiments on a real WSN – to investigate the fundamental reasons of this problem, and we found that it is caused by 
the contention-based MAC (Medium Access Control) protocol used for channel access and its default parameter values. We 
also found that, with a more appropriate MAC parameters setting, it is possible to mitigate the problem and achieve a 
delivery ratio up to 100%, at least in the scenarios considered in this paper. However, this improvement in communication 
reliability is achieved at the cost of an increased latency, which may not be acceptable for industrial applications with 
stringent timing requirements. In addition, in some cases this is possible only by choosing MAC parameter values formally 
not allowed by the standard.  
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I. INTRODUCTION 

Wireless Sensor Networks (WSNs) are one of the most promising solutions in the field of industrial 

communications [1]. A WSN consists of a number of tiny sensor nodes deployed over a sensing field. 

Each node is a low power device capable of sensing physical information from the surrounding 

environment (e.g., temperature, pressure, vibrations), processing the acquired data locally, and sending 

them to one or more collection points, referred to as sinks or base stations [2]. Hence, a WSN can be 

regarded as a distributed sensing system that may be adequate for many monitoring and control 

applications [1]. Actually, WSNs have been already considered for many industrial applications 

including: factory automation [3], distributed and process control [4, 5, 6], real-time monitoring of 

machinery health, detection of liquid/gas leakage, radiation check, and so on [7]. And, based on recent 

studies [8], their exploitation for industrial applications is expected to increase significantly in the near 

future, especially in the fields of logistics, automation and control. This positive trend should also be 

favored by the adoption of two industrial standards, recently released by the IEEE and the ZigBee 
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Alliance, respectively. The IEEE 802.15.4 standard [9] defines the physical and MAC (Medium Access 

Control) layers of the protocol stack, while the ZigBee specification [10] covers the networking and 

application layers. 

There are four key requirements that need to be fulfilled for a credible deployment of WSNs in 

industrial environments, i.e., energy efficiency, scalability, reliability and timeliness [1, 11]. Energy 

efficiency is extremely important as sensor nodes are typically powered by batteries – with a limited 

energy budget – which cannot be replaced nor recharged, due to environmental or cost constraints. 

Even when batteries can be replenished – e.g., by harvesting energy from the external environment [12] 

– efficient power management of sensor nodes is required to achieve an adequate network lifetime [13]. 

To this end, the 802.15.4 standard includes a power management mechanism, based on duty cycle, to 

minimize the activity of sensor nodes (see Section III). Scalability is another important factor to be 

considered because the number of deployed sensor nodes may be very high, especially when large 

geographical areas need to be monitored. Finally, reliability and timeliness are very critical issues in 

industrial environments. If a given percentage of the data packets is not delivered to the sink, correctly 

and within a pre-defined deadline, the correct behavior of the sensing system (e.g., the timely detection 

of an event) can be compromised. The maximum allowed latency depends on the specific application. 

Typical values are tens of milliseconds for discrete manufacturing, seconds for process control, and 

minutes for asset monitoring [11]. In the following, we will refer to the capability of meeting specific 

deadlines – or equivalently, of providing time-bounded latency – as predictability. 

In an industrial scenario the reliability and/or the predictability can be hindered by a number of factors. 

First, sensor nodes may undergo failures due to the presence of dust, liquids, corrosive agents, etc. In 

addition, the quality of wireless communication may be severely affected by multi-path fading in signal 

propagation and external interferences produced by other devices and machinery operating in the same 

frequency band of sensor nodes [1, 14, 15, 16, 17]. Finally, data packets containing sensor readings may 

be dropped, or may experience an excessively long latency, due to congestion phenomena in the WSN. 

For instance, in WSNs where data transmissions are regulated by a contention-based MAC protocol, a 

fraction of packets could experience collisions and retransmissions, and could also be dropped by the 

MAC layer if the number of contending nodes is high. Since this may prevent the WSN from providing 

the required reliability and bounded latency, also when transmission errors do not occur and sensor 

nodes never fail, congestion phenomena should be avoided or controlled in an appropriate way. 
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In this paper we focus on IEEE 802.15.4 WSNs and show that they provide a very low reliability in 

terms of packet delivery ratio (i.e., the percentage of data packets correctly delivered to the sink node) 

when power management is enabled. We found that this behavior is caused by the 802.15.4 MAC 

protocol and therefore, throughout we will refer to it as the 802.15.4 MAC unreliability problem. 

Specifically, we found that this problem – which is originated by the CSMA/CA (Carrier Sense 

Multiple Access with Collision Avoidance) algorithm used for channel access – becomes critical when 

power management is enabled due to the default MAC parameters setting suggested by the standard. 

Indeed, the IEEE 802.15.4 standard allows some flexibility in choosing CSMA/CA parameters, as it 

defines a range of allowed values for each of them. Our results show that, with an appropriate 

parameters setting, it is possible to mitigate the MAC unreliability problem and increase the delivery 

ratio, up to 100%, at least in the scenarios considered in this paper. However, this is achieved at the 

cost of a significantly higher latency, which might not be acceptable for industrial applications with 

stringent timing requirements. In addition, in some scenarios, a high delivery ratio can only be obtained 

by using CSMA/CA parameter values which are not compliant with the standard.  

We validated our simulation results through an extended experimental analysis carried out on a real 

WSN. The experimental measurements confirm the simulation results and show that the solution 

envisaged to mitigate the MAC unreliability problem is viable, at least in some application scenarios. 

To the best of our knowledge, this is the first paper investigating the sensitiveness of the 802.15.4 

performance to the CSMA/CA parameters setting, by using both simulation and measurements on a real 

WSN. 

The rest of the paper is organized as follows. Section II discusses the related work. Section III 

introduces the 802.15.4 MAC protocol, while Section IV describes the simulation setup used for our 

analysis. Section V shows the effects of the 802.15.4 MAC unreliability problem. Section VI analyzes 

the impact of each single MAC parameter, while Section VII presents a possible solution to mitigate the 

problem. Section VIII discusses the results of the experimental analysis. Finally, conclusions are drawn 

in Section IX. 

II. RELATED WORK 

Many previous papers concerning WSNs focus on the 802.15.4 standard, which is considered the 

reference technology in the field, and is expected to have a significant impact also on industrial 

applications [1]. However, the suitability of the 802.15.4 MAC protocol for WSNs, with specific 
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reference to industrial scenarios, has never been extensively analyzed. Actually, many papers are 

targeted to assess the performance of the 802.15.4 MAC protocol, mainly in terms of throughput and 

energy expenditure. But, in many cases they approach the problem analytically and, hence, introduce 

some assumptions to simplify the analysis. For example, [18] and [19] assume exponentially-

distributed packet generation times, and do not consider the case of simultaneous transmission attempts 

by all – or many – sensor nodes (e.g., after an inactive period). Under these conditions, they do not 

observe any MAC unreliability problem (our simulation results also confirm that, under the same 

conditions, the delivery ratio is close to 100%). More realistic scenarios have been considered in [20, 

21, 22, 23]. These papers investigate different aspects related to the performance of the 802.15.4 MAC. 

However, they too do not find out any severe limitation in the MAC protocol, especially in terms of 

reliability.  

The limited scalability of the 802.15.4 MAC is pointed out by Yedavalli et al. [24] who analyze the 

performance in terms of throughput and energy consumption. They show that the 802.15.4 MAC 

performs very poorly when the number of contending nodes is high. However, they do not investigate 

the impact of the different MAC parameters. Instead, they propose an enhanced MAC protocol with 

better scalability properties.  

Misic et al. [25] identify a number of potential issues that can degrade the performance of the MAC 

protocol, including possible congestions caused by the simultaneous attempts of several nodes to access 

the wireless medium after an inactive period. As in [24], they also propose some changes in the 

standard MAC protocol to overcome these issues, e.g., by introducing a random delay before the 

channel access to avoid possible congestions after an inactive period. We show here that this problem 

can be simply overcome with an appropriate setting of CSMA/CA parameters, without introducing any 

modification to the MAC protocol. 

Issues related to the MAC unreliability, in terms of packet drop probability, have been addressed in [26, 

27, 28, 29]. Shu et al. [26] consider a star network and assume that (i) all nodes attempt to transmit a 

packet at the beginning of the active period and, (ii ) the acknowledgment mechanism is disabled. They 

show that the packet drop probability can be extremely high in this scenario, especially for large 

number of sensor nodes and packet sizes. However, they do not consider the effects of using 

acknowledgements and retransmissions. In addition, they miss to investigate the fundamental reasons 

for this behavior and, consequently, they do not propose any possible solution to fix or, at least, 

alleviate this problem.  
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Both [27] and [28] also consider a star network topology and analyze the MAC protocol performance 

under the assumption that each sensor node has an infinite backlog of packets to send (saturated traffic 

conditions). They both find out that, under these conditions, a large fraction of packets is dropped 

during the channel access, and the drop probability increases with the number of sensor nodes. Pollin et 

al. [28] suggest using a larger exponential backoff delay to alleviate the problem. Similarly, Singh et al. 

[27] show that using larger backoff parameter values can provide a significant decrease in the packet 

drop probability, at the cost of a decreased throughput when the number of nodes is low. In both cases, 

however, the focus of the analysis is on the maximum achievable throughput and energy consumption. 

Therefore, the high packet discard probability is not recognized as a major limitation, and is only 

marginally addressed by the authors. 

Park et al. [29] also consider a star network topology and develop an accurate analytical model of the 

802.15.4 MAC protocol in the beacon enabled mode. They explicitly consider the limited number of 

backoff stages and retransmissions, and derive the delivery ratio, average latency and power 

consumption as functions of the offered load and different MAC parameters. The authors show that, 

under saturated (or very high) traffic conditions and large number of nodes, the delivery ratio can be 

low. They also show its dependency on different MAC parameters. However, since the analysis mainly 

focuses on the unsaturated traffic regime, saturated traffic is considered an extreme scenario. In 

addition, the performance analysis is mainly targeted at validating the accuracy of the proposed model. 

Hence, as above, the authors do not emphasize any MAC unreliability problem and, consequently, they 

do not investigate its causes nor propose any solution to it. In this paper we investigate thoroughly the 

fundamental reasons for the MAC unreliability problem, and propose a solution for its mitigation. 

Unlike [24] and [25], we do not propose any modification to the standard MAC protocol. Instead, we 

show that the MAC unreliability problem can be mitigated by an appropriate setting of CSMA/CA 

parameters. 

Strategies for tuning the 802.15.4 CSMA/CA algorithm are considered in [30] and [31]. Specifically, 

Nefzi et al. [30] introduce a service differentiation strategy, consisting in defining both CSMA/CA 

parameter sets (i.e., minimum and maximum backoff exponents, and the contention window size) and 

queuing policies so as to prioritize specific classes of traffic. However, since the focus is on message 

prioritization, little attention is devoted to reliability and energy expenditure. In addition, only a few 

CSMA/CA parameters are considered, and acknowledgements are not used. Youn et al. [31] propose a 

message prioritization mechanism exploiting a Gaussian distribution for the backoff procedure. 
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Although the proposed solution might be compatible to commercially-available transceivers, it is 

actually not compliant with the 802.15.4 standard, since the backoff procedure is different. On the other 

hand, our solution is fully compatible with the 802.15.4 standard, and can be used also in sensor nodes 

where the MAC protocol cannot be changed. 

In the present paper we extend our previous analysis of the 802.15.4 MAC protocol where an ideal 

wireless channel was assumed [32]. In this paper we specifically refer to an industrial environment and, 

thus, we consider a more realistic scenario where wireless communication may be affected by 

(correlated) transmission errors due to fading and interference. In addition, while the analysis in [32] is 

almost completely based on simulation, in this paper we also reported experimental results derived 

from measurements on a real WSN. For the sake of space we only refer to a star network topology. 

Additional results for a cluster-tree (i.e., multi-hop) topology can be found in [33].  

The effects of external interferences produced by other devices or machinery on the performance of an 

802.15.4 WSN have been experimentally investigated by Bertocco el al. [17]. However, they consider 

an application-layer polling-based protocol for periodic data collection from sensor nodes and, hence, 

they do not specifically address issues related to the 802.15.4 MAC protocol. Using an application-layer 

protocol for data collection is a very common approach in industrial applications. Nevertheless, we 

think it is very important for industrial application developers to know the limits and capabilities of the 

underlying MAC protocol. To the best of our knowledge, this is the first paper investigating the 

sensitiveness of the 802.15.4 WSN performance to the MAC protocol parameters setting, by using both 

simulations and measurements on a real WSN. 

III.  IEEE 802.15.4 STANDARD 

IEEE 802.15.4 [9] is a standard for low-rate, low-power, and low-cost Personal Area Networks (PANs). 

A PAN is formed by one PAN coordinator which is in charge of managing the whole network, and, 

optionally, by one or more coordinators which are responsible for a subset of nodes in the network. 

Ordinary nodes must associate with a (PAN) coordinator in order to communicate. The supported 

network topologies are star (single-hop), cluster-tree and mesh (multi-hop).  

The standard defines two different channel access methods: a beacon enabled mode and a non-beacon 

enabled mode. The beacon enabled mode provides a power management mechanism based on a duty 

cycle. It uses a superframe structure (see Figure 1) which is bounded by beacons, i.e., special 

synchronization frames generated periodically by the coordinator node(s). The time between two 
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consecutive beacons is called Beacon Interval (BI), and is defined through the Beacon Order (BO) 

parameter (BI=15.36·2BO ms, with 0≤BO≤14)1. Each superframe consists of an active period and an 

inactive period. In the active period nodes communicate with the coordinator they associated with, 

while during the inactive period they enter a low power state to save energy. The active period is 

denoted as Superframe Duration (SD) and its size is defined by the Superframe Order (SO) parameter 

(SD=15.36·2SO ms, with 0≤SO≤BO≤14). It can be further divided into a Contention Access Period 

(CAP) and a Collision Free Period (CFP). During the CAP a slotted CSMA/CA algorithm is used for 

channel access, while in the CFP communication occurs in a TDMA (Time Division Multiple Access) 

style by using a number of Guaranteed Time Slots (GTSs), pre-assigned to individual nodes. In the non-

beacon enabled mode there is no superframe, nodes are always active (energy conservation is delegated 

to the layers above the MAC protocol) and use the unslotted CSMA/CA algorithm for channel access. 

GTS GTS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CAP CFP

SD = aBaseSuperFrameDuration*2SO sym

BI = aBaseSuperFrameDuration*2BO sym

Inactive

Active 

Beacon Beacon

 

Figure 1. IEEE 802.15.4 Superframe Structure. 

A. CSMA/CA algorithm 

The CSMA/CA algorithm is used in both the beacon enabled mode (during the CAP portion of the 

active period) and the non-beacon enabled mode. In the beacon-enabled mode a slotted scheme is used 

– i.e., all operations are aligned to backoff period slots (whose duration is 320µs) – while in the non-

beacon enabled mode there is no such alignment. For brevity, in the following we will refer to the 

slotted scheme, highlighting the differences in the unslotted variant, when necessary. 

Upon receiving a data frame to be transmitted, the CSMA/CA algorithm performs the following steps. 

                                                 

1 Throughout the paper we assume that the sensor network operates in the 2.4 GHz frequency band. 
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1. A set of state variables is initialized, i.e., the contention window size (CW=2, only for the slotted 

variant), the number of backoff stages carried out for the on-going transmission (NB=0), and the 

backoff exponent (BE=macMinBE). 

2. A random backoff time, uniformly distributed in the range [0, 320·(2BE-1) µs], is generated and used 

to initialize a backoff timer. In the beacon-enabled mode, the starting time of the backoff timer is 

aligned with the beginning of the next backoff slot. In addition, if the backoff time is larger than the 

residual CAP duration, the backoff timer is stopped at the end of the CAP and resumed at the 

beginning of the next superframe. When the backoff timer expires, the algorithm proceeds to step 3. 

3. A Clear Channel Assessment (CCA) is performed to check the state of the wireless medium. 

a) If the medium is busy, the state variables are updated as follows: NB=NB+1, BE=min(BE+1, 

macMaxBE) and CW=2 (only for the slotted variant). If the number of backoff stages has 

exceeded the maximum admissible value (i.e. NB>macMaxCSMABackoffs), the frame is 

dropped. Otherwise, the algorithm falls back to step 2. 

b) If the medium is free and the access mode is unslotted, the frame is immediately transmitted. 

c) If the medium is free and the access mode is slotted, then CW=CW-1. If CW=0 then the frame is 

transmitted2. Otherwise the algorithm falls back to step 3 to perform a second CCA. 

It should be noted that, unlike the algorithm used in 802.11 WLANs, the 802.15.4 slotted CSMA/CA 

does not guarantee a transmission at the end of the backoff time after the channel is found clear. 

Instead, transmission occurs only if the wireless medium is found free for two consecutive CCAs. 

The 802.15.4 CSMA/CA algorithm supports an optional retransmission scheme based on 

acknowledgements and timeouts. When the retransmission mechanism is enabled, destination nodes 

must send an acknowledgement just after receiving a correct data frame. The acknowledgement is not 

sent in case of collision and corrupted frame reception. On the sender side, if the acknowledgment is 

not (correctly) received within the pre-defined timeout, a retransmission is scheduled until the 

maximum number of retransmissions (macMaxFrameRetries) is reached. In the latter case the data 

frame is dropped. 

                                                 

2 In the beacon-enabled mode, before starting the frame transmission, the algorithm calculates whether it is able to complete the operation within the 

current CAP. If there is not enough time, the transmission is deferred to the next superframe. 
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IV. SIMULATION ENVIRONMENT 

To perform our simulation analysis we used the ns2 simulation tool [34], which includes the 802.15.4 

module originally developed in [21] and the modifications in [35]. In all experiments we assumed that 

the 802.15.4 MAC protocol is operating on top of the 2.4 GHz physical layer, with a 250-Kbps 

maximum bit rate. The transmission range was set to 15 m (according to the settings in [21]), while the 

carrier sensing range was set to 30 m (according to the model in [36]).  

In our experiments we considered a star network scenario where the sink node acts as the PAN 

coordinator and all other nodes operate with a duty cycle for power management. Sensor nodes are 

placed in a circle centered at the sink node, 10 m far from it. Due the considered radio model (the 

carrier sensing range is twice the transmission range), all nodes are in the carrier sensing range of each 

other. This minimizes the probability of collisions due to the hidden node problem [37]. The network 

uses the beacon-enabled mode. The duty cycle is set to about 1.5%, according to the typical values 

recommended by the ZigBee standard [10] which are in the range 0.1% - 2%. Specifically, the Beacon 

Interval is 125.8 s (BO=13), while the active period is 1.97 s (SO=7). Note that the active period is 

large enough to let every node send its data packets in all the analyzed scenarios, so that the enforced 

duty cycle does not harm the packet transmission process. 

To simulate realistic packet errors/losses we used the Gilbert-Elliot model, which has been shown to 

provide a good approximation of fading in industrial environments [14, 15, 16]. In addition, this model 

has been used in a number of previous performance analysis of industrial wireless systems and 

networks (e.g., [38, 39, 40]). In our analysis we took an approach similar to [39] and [40], and used 

values inspired from real measurements [14]. Unless differently specified, we assumed a packet error 

rate (PER) of approximately 10%. Specifically, the PER in the bad and good state of the Gilbert-Elliot 

model is assumed to be 100% and 0%, respectively. Sojourn times in the two states are exponentially 

distributed and their average values are 5.7 and 46.2 ms, for bad and good state, respectively. To 

broaden our analysis, in some experiments we also considered different values of PER. These values 

were obtained by changing the average sojourn time in the bad state accordingly, while leaving all the 

other parameters unchanged. 

We considered a reporting application where sensed data have to be reported to the sink periodically, 

which is a very common case in monitoring applications. However, for comparison purposes, we also 

considered a Poisson data generation process. Unless stated otherwise, acknowledgements are enabled 

and every sensor node generates one data packet per Beacon Interval (on average when the generation 
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process is Poisson). The packet size – corresponding to the MAC frame payload – is 100 bytes, while 

the MAC frame header is 7 bytes3. 

A. Performance Indices 

In our analysis we considered the following indices. 

• Delivery ratio, defined as the ratio between the number of data packets correctly received by the 

sink and the total number of data packets generated by all sensor nodes. This index jointly 

represents the network reliability as well as the scalability of the data collection process. 

• Latency, defined as the time from when the packet transmission is started at the source node to 

when the same packet is correctly received by the sink. We measured both its average value and its 

distribution. Latency characterizes the timeliness of the system.  

• On-time delivery ratio, defined as the percentage of packets received correctly and within a certain 

pre-defined deadline. For delay-bounded applications the on-time delivery ratio (or, 

correspondingly, the deadline miss ratio), provides the fraction of packets delivered on time (or 

missing the deadline). Hence, it combines both reliability and predictability. 

• Average energy per packet, defined as the total energy consumed by each sensor node divided by 

the number of data packets correctly delivered to the sink. This index measures the energy 

efficiency of the WSN. 

The energy consumed by a sensor node was calculated by using the model presented in [41], which is 

based on the Chipcon CC2420 radio transceiver [42]. Specifically, the model supports the following 

radio states: transmit, receive, idle (the transceiver is on, but it is not transmitting nor receiving, i.e., it 

is monitoring the channel) and sleep (the transceiver is off and can be switched back on quickly). In 

addition, the model accounts for the energy spent due to state transitions as well. Although the standard 

does not explicitly state when the transceiver should be sleeping – except for the inactive portion of the 

superframe when the beacon-enabled mode is used – to further improve the energy efficiency we put 

the transceiver into the sleep state when there is no packet to be transmitted, as proposed in [19].  

In our experiments, for each simulated scenario, we performed 10 independent replicas, where each 

replica consists of 1000 Beacon Intervals. For each replica we discarded the initial transient period 

                                                 

3 In the following we assume that IEEE 802.15.4 short addresses are used, thus requiring 4 bytes in the MAC header. 
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(10% of the overall duration) during which nodes associate to the PAN coordinator and start generating 

data packets. The results shown below are averaged over all the different replicas. We also derived 

confidence intervals by using the independent replication method and a 95% confidence level. They are 

typically so small that they cannot be appreciated in the figures below. 

V. THE MAC UNRELIABILITY PROBLEM 

Many previous works [18, 19, 23, 27] have analyzed the performance of the 802.15.4 MAC protocol in 

a star network under the assumption that sensor nodes are always active (i.e., power management is 

disabled), and data packets are generated according to a Poisson process. Therefore, we start our 

analysis by comparing the MAC performance under Poisson and Periodic traffic patterns, when power 

management is enabled and disabled.  

Figure 2-a shows the delivery ratio – as a function of the number of sensor nodes – for Periodic and 

Poisson packet arrivals, when the power management mechanism is enabled (PMan ON) and disabled 

(PMan OFF). The effects of packet retransmissions are also shown. Specifically, when packets are 

generated according to the Poisson distribution and power management is disabled (i.e., sensor nodes 

are always active), the delivery ratio is around 90% if acknowledgements and retransmissions are not 

used (Ack OFF). This is due to the effect of packet errors (PER is equal to 10%). The retransmission 

mechanism (Ack ON) allows to recover almost all corrupted packets, thus increasing the delivery ratio 

to approximately 100%. 

  
(a) (b) 

Figure 2. Delivery ratio in a star network with Poisson and Periodic traffic, when the power management is enabled 
and disabled (a). Impact of the packet generation rate on the delivery ratio (b). 
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When the arrival process is still Poisson but power management is enabled, the delivery ratio drops 

sharply with the number of nodes. The delivery ratio is even lower if the arrival process is Periodic 

instead of Poisson. As expected, in both cases retransmissions increase the communication reliability. 

However, when the number of nodes is high (e.g. 50), the delivery ratio is anyway very low, i.e., around 

10% and 20% with Periodic and Poisson traffics, respectively. 

For Poisson arrivals, the very different behavior – with and without power management – can be 

explained as follows. When nodes are always active, packets are transmitted immediately after their 

generation. Since generation times are spread along the Beacon Interval there is almost no contention 

among sensor nodes. Instead, when power management is enabled, the packets generated during the 

sleeping time are deferred to the beginning of the next Active Period, when all nodes wake up at the 

same time. Therefore, channel access attempts tend to become synchronized. If the data generation 

process is Periodic (instead of Poisson), packets are generated just before the beginning of the Active 

Period so as to minimize the latency. Hence, channel accesses are perfectly synchronized and this 

increases contention among nodes.  

We also considered different values of the Beacon Interval while leaving the Active Period constant, 

i.e., we varied the duty cycle. We found that the delivery ratio does not depend on the Beacon Interval 

when the arrival process is Periodic. Instead, it is significantly affected when packets are generated 

according to Poisson. In the latter case, for a fixed number of nodes, the delivery ratio is close to 100% 

(90% if the retransmission mechanism is disabled) when the Beacon Interval is small – i.e., the duty 

cycle is high – and decreases progressively as the Beacon Interval increases. The different behavior can 

be easily explained. When packets are generated periodically, all nodes contend for channel access at 

the beginning of the Active Period. In case of Poisson traffic, since packet arrivals are spread along the 

Beacon Interval, not all nodes have to contend at the beginning of the Active Period. In detail, only 

nodes which generated packets during their sleeping time contend simultaneously at the beginning of 

the Active Period. This condition is more likely to happen when the relative duration of the Active 

Period with respect to the Beacon Interval is low. 

The results in Figure 2-a clearly point out that the 802.15.4 MAC protocol is not able to manage 

contentions efficiently, even when a limited number of nodes try to access the wireless channel 

simultaneously, e.g., due to power management. Throughout, we will refer to this issue as the 802.15.4 

MAC unreliability problem. Its impact on performance is strongly affected by the data traffic pattern, 



13 

i.e., for a given number of sensor nodes, the unreliability increases as the number of simultaneously 

contending nodes increases. 

To broaden our analysis we investigated the impact on the MAC unreliability problem of a number of 

additional operating parameters such as packet generation rate, packet size, packet error rate. In all 

subsequent experiments we only considered the Periodic packet generation process – as this it more 

realistic than Poisson for (periodic) reporting applications – and assumed that the 

acknowledgement/retransmission mechanism is always enabled (unless differently specified). 

Figure 2-b shows that, as expected, the MAC unreliability becomes more and more serious as the 

packet generation rate, i.e., the offered load, increases. It is worthwhile emphasizing that 50 nodes 

generating three 100-byte packets per Beacon Interval produce an aggregate offered load of 

approximately 70 Kbps4. On the other side, the network data rate is 250 Kbps and the maximum 

throughput that can be achieved with the 802.15.4 MAC protocol is about 140 Kbps [43]. Also, the 

overall number of packets generated by all sensor nodes during each Active Period (150 in the case of 3 

packets per Beacon Interval) is much lower than the total number of packets that could be transmitted 

during an Active Period using an ideal transmission schedule. In the latter case packets are transmitted 

back-to-back, and the total time required for transmitting a single packet is Dtot = Dframe + 

aTurnaroundTime + Dack + LIFS, where Dframe (Dack) is the data (ack) frame transmission time, 

aTurnaroundTime is the delay for switching the transceiver from transmit to receive mode, and LIFS is 

the duration of a Long Inter Frame Space [9]. In our scenario5 it turns out Dtot = 4.864 ms (4.320 ms if 

acknowledgements are disabled) and, consequently, the total number of packets that could be 

accommodated within an Active Period (1.966s) is approximately 404 (455 without 

acknowledgements). Hence, assuming a packet generation of 3 packets per Beacon Interval, up to 134 

or 151 sensor nodes (with and without acknowledgements, respectively) could be theoretically 

supported by an ideal transmission schedule. 

We also investigated the effect of varying the packet size, while leaving the packet generation rate 

unchanged. The trend is similar to that shown in Figure 2-b (the results are not shown here for the sake 

of space). This is because the offered load tends to increase in both cases.  

                                                 

4 We considered an overall packet size of 115 bytes (6-byte PHY header + 7-byte MAC header + 100-byte payload + 2-byte MAC trailer). The Active 
Period is 1.966s. 

5 We considered Dframe = 3.68 ms (6-byte PHY header + 7-byte MAC header + 100-byte payload + 2-byte MAC trailer), Dack = 0.352 ms (6-byte PHY 
header + 5-byte MAC header and trailer), aTurnaroundTime = 0.192 ms, LIFS = 0.640 ms. We used the Long Inter Frame Space as the frame size is 
more than 18 bytes [9]. 
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(a) (b) 
Figure 3. Impact of Packet Error Rate on the delivery ratio (a) and comparison with S-MAC (b). 

Finally, we varied the PER in the range [0-30] % to analyze the effects of (correlated) transmission 

errors on the MAC performance. As expected, Figure 3-a shows that the MAC unreliability increases as 

the PER increases, since the source sensor nodes have to retransmit more frames. We can also observe 

that the impact of transmission errors is much more apparent when the number of sensor nodes is low. 

This is because, when the number of nodes is large and for a given PER value, the effects of congestion 

predominate over those originated by transmission errors.  

The results presented above show that the 802.15.4 MAC has a very poor performance, in terms of 

delivery ratio, in the considered scenario. In our analysis we referred to a star network topology. 

However, similar conclusions are also drawn in [33] where a cluster-tree (i.e., multi-hop) topology is 

considered. It is well known that CSMA-based MAC protocols do not perform well when a large 

number of sensor nodes start transmitting simultaneously [44]. However, this well-known problem is 

much more severe in the 802.15.4 MAC than in other similar MAC protocols, as highlighted in Figure 

3-b. There, we compare the performance of the 802.15.4 MAC with that of S-MAC [45], another very 

popular contention-based MAC protocol for WSNs. S-MAC is based on the well-known 802.11 

CSMA/CA algorithm [46] for regulating channel access. As above, all sensor nodes start transmitting 

simultaneously. We can see that, in the same operating conditions, S-MAC is able to provide a 100% 

delivery ratio, irrespective of the number of nodes, if the retransmission mechanism is enabled.  

VI. IMPACT OF CSMA/CA PARAMETERS 

The results presented in the previous section showed that the MAC unreliability problem in 802.15.4 

WSNs is much more severe than in other contention-based WSNs, and it can seriously degrade the 
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performance of the data collection process. Thus, it is very important to properly understand the 

fundamental reasons of this behavior so as to mitigate its negative effects. To this end, we performed a 

thorough simulation analysis to investigate the impact of each single CSMA/CA parameter. Table 1 

summarizes the parameters introduced in Section III and the related ranges and default values defined 

in the standard. For completeness, Table 1 refers to both the 2003 and 2006 standard releases but in our 

analysis we only referred to the most recent release.  

TABLE 1. 802.15.4 CSMA PROTOCOL PARAMETERS 

Parameter 
Allowed Values 

Description 2003 Release [47] 2006 Release [9] 

macMaxFrameRetries 
Constant: 3 

(aMaxFrameRetries) 
Range: 0-7 
Default: 3 

Maximum number 
of retransmissions 

macMaxCSMABackoffs 
Range: 0-5 
Default: 4 

Range: 0-5 
Default: 4 

Maximum number 
of backoff stages 

macMaxBE 
Constant: 5 
(aMaxBE) 

Range: 3-8 
Default: 5 

Maximum backoff 
window exponent 

macMinBE 
Range: 0-3 
Default: 3 

Range: 0-7 
Default: 3 

Minimum backoff 
window exponent 

 

We focused on a star network with 15 sensor nodes and PER=10%, and evaluated the impact of each 

single MAC parameter, not only in terms of delivery ratio, but also in terms of energy efficiency and 

latency experienced by data packets. For the sake of space, we only show the delivery ratio below. 

Since the general trend is similar to that observed in ideal channel conditions, the reader can refer to 

[32] for a more detailed analysis of the impact of each single parameter on the 802.15.4 MAC 

performance. 

  
(a) (b) 

Figure 4. Delivery ratio and packet dropping probability vs. maximum number of retransmissions (a). Impact of 
macMaxCSMABackoff on the delivery ratio (b). 
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Figure 4-a shows that increasing the maximum allowed number of retransmissions – i.e., the 

macMaxFrameRetries parameter (while leaving all other parameters to their default values) – does not 

provide any significant effect on the delivery ratio for values larger than one. This is because almost all 

undelivered packets are dropped by the MAC protocol because of the exceeded number of backoff 

stages (the maximum allowed values is specified by the macMaxCSMABackoffs parameter, set to 4 by 

default). As clearly shown in Figure 4-a, the percentage of packets discarded for exceeded number of 

retransmissions is negligible when macMaxFrameRetries ≥ 2. We found that a higher number of 

retransmissions can be beneficial only when the PER is very high (e.g., 30% and beyond) and the 

number of sensor nodes large (e.g., 30 or more). 

Based on the results in Figure 4-a, we would expect that an increase in the maximum number of 

allowed backoff stages produce a significant impact on the MAC reliability. Actually, increasing the 

macMaxCSMABackoffs parameter – while leaving all other parameters to their default values – results 

in an almost linear increase in the delivery ratio (see Figure 4-b). Furthermore, in these experiments we 

also observed a better energy efficiency, at the cost of an increased latency experienced by packets. The 

latency increases because a larger number of packets is successfully transmitted, which takes more 

time. At the same time, the average energy consumption per packet decreases (significantly) because 

this larger number of successful transmissions only requires a limited amount of additional energy. The 

results presented in Figure 4-b show that increasing the macMaxCSMABackoffs parameter produces a 

significant increase of the delivery ratio but, also for large macMaxCSMABackoffs values, it remains 

well below 100%. 

  
(a) (b) 

Figure 5. Inpact on the delivery ratio of macMaxBE (a) and macMinBE (b). 
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Figure 5-a shows the effects of increasing the maximum backoff-window size (through the macMaxBE 

parameter), while leaving the maximum number of retransmissions and the minimum window size (i.e., 

the macMinBE parameter) to their default values. Now the delivery ratio increases up to values very 

close to 100%. This is due to the combined effect of a larger backoff window size and a higher number 

of backoff stages, which are bounded by the following constraint6: 

macMaxCSMABackoffs ≥ macMaxBE – macMinBE (1) 

Due to motivations similar to the ones we have already discussed, the packet latency increases 

accordingly, while the energy consumption per packet decreases significantly. 

Finally, we fixed macMaxBE and varied macMinBE in the range [1, macMaxBE-1], while leaving 

macMaxFrameRetries to its default value. Figure 5-b, which refers to three different values of 

macMaxBE (i.e., 5, 8, and 10), shows that increasing the minimum backoff-window size further 

increases the delivery ratio, up to 100%. This is because a larger initial backoff window reduces the 

collision probability in the first backoff stages. As above, the latency experienced by packets increases 

while the average energy consumed per packet correctly delivered to the sink node decreases. 

Based on the above-mentioned results, the following conclusions can be drawn. The MAC reliability 

can be improved – up to a 100% delivery ratio – by increasing one or more MAC parameters, as this 

spreads the transmission attempts of different sensor nodes over a longer time interval, thus reducing 

the number of simultaneously contending nodes, and increases the number of allowed trials per packet. 

The cost to be paid is an increase in the latency experienced by packets while the average energy per 

packet reduces, even significantly. An increased latency may be a problem in many delay-bounded 

industrial applications, where packets must be delivered within a predefined deadline. These 

conclusions suggest that the MAC unreliability problem, which is originated by the CSMA/CA 

algorithm, is made worse by the default parameters setting, which appears to be not appropriate for 

WSNs with power management enabled. The key question to answer is, thus, whether a more 

appropriate parameters setting can mitigate the problem without introducing unacceptable side effects 

(e.g., excessive latency). This will be investigated in the next section. 

                                                 

6 In order to satisfy Constraint (1) for all evaluated values of macMaxBe and macMaxBE, in the simulation we set macMaxCSMABackoffs to 10. 



18 

VII.  PROBLEM MITIGATION 

To answer the previous question we considered three different sets of CSMA/CA parameter values, 

summarized in Table 2, and defined as follows. 

• Default Parameters Set (DPS). This set consists of the default values specified by the standard.  

• Standard Parameters Set (SPS). This set consists of parameter values still compliant with the 

802.15.4 standard (2006 release). Specifically, all parameters are set to the corresponding 

maximum value allowed by the standard (see Table 2). 

• Non-standard Parameters Set (NPS). This set of parameter values is not compliant with the 

802.15.4 standard. In particular, all parameters are set to values beyond the maximum ones allowed 

by the standard (see Table 2). 

TABLE 2. CSMA/CA PARAMETER SETS 

Parameter set macMinBE macMaxBE macMaxCSMABackoffs macMaxFrameRetries 

DPS 3 5 4 3 
SPS 7 8 5 7 
NPS 8 10 10 10 

Below, we will consider again the star network scenario analyzed in Section V, and will re-derive the 

performance, under the three CSMA/CA parameter sets defined above, for two different PER values 

(0% and 30%). The four plots in Figure 6 show how the different performance indices change when 

passing from one parameter set to another. In terms of delivery ratio (Figure 6-a), there is a dramatic 

increase when moving from DPS to SPS. However, the delivery ratio remains significantly below 100% 

when the number of sensor nodes is large and/or the channel is very unreliable. Instead, when using the 

non-standard parameter set (i.e., NPS) the delivery ratio is approximately 100% even in such extreme 

conditions. Obviously, this increase in the delivery ratio comes at the cost of a larger packet latency.  

Figure 6-b shows that, with 50 nodes and PER=30%, the average latency increases from 50 ms (DPS) 

to 200 ms (SPS) and more than 350 ms (NPS). We also found that the 99-th percentile of the latency 

distribution with SPS and NSP, is approximately 0.7s and 1.2s, respectively. These values are clearly 

unacceptable for many industrial applications, where packets must be delivered within a certain 

deadline. Therefore, for this specific scenario, we measured the fraction of packets delivered on time, as 

a function of the maximum latency tolerated by the application. Figure 6-c shows that, while it is 

always convenient using parameter values larger than the default ones, using very large values might 

not be so convenient, depending on the type of industrial application [11]. For example, when the 
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deadline is less than or equal to 100 ms, the fraction of packets delivered on time is below 20%, 

irrespective of the parameter set. 

  
(a) (b) 

      

(c) (d) 

Figure 6. Delivery ratio (a), average latency (b), on-time delivery ratio (c), and energy efficiency (d) with DPS, SPS 

and NPS sets. 

Passing from DPS to SPS and NPS also increases the total energy consumption as a larger number of 

packets are transmitted by sensor nodes. However, if we look at the average energy consumption per 

packet (Figure 6-d), instead of the total energy consumption, there is a significant decrease when 

passing from DPS to SPS (from 12.6 mJ/packet to approximately 8 mJ/packet, with 50 nodes and 

PER=30%). This is because the additional energy consumption is largely compensated by the 

significant increase in the number of (correctly) delivered packets. We can observe a slight decrease 

also when passing from SPS to NPS. However, the results in Figure 6-d do not consider any constraints 

in the maximum latency tolerated by the application. This is not the case for time-bounded applications. 

For instance, assuming a maximum latency of 100 ms, both SPS and NPS deliver approximately 20% 
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of packets on time. However, the energy cost for each packet delivered on time is, on average, 30.1 mJ 

with SPS and 41.9 mJ with NPS.   

To conclude our simulation analysis, we also performed experiments where we varied the offered load 

(i.e., 1, 2, 3 packets per Beacon Interval), while leaving the PER value constant at 10%. The obtained 

results are aligned with those shown in Figure 6, and are thus omitted for the sake of space. 

The results presented in this section confirm that in 802.15.4 WSNs the MAC unreliability problem is 

made more severe than in other similar WSNs by the default parameter values suggested by the 

standard. They also show that, in the considered scenario, a delivery ratio of 100% (or very close to 

100%) can be achieved by just setting the MAC parameters to more appropriate values. However, since 

the increase in the delivery ratio is achieved at the cost of a higher latency, and due to the random 

nature of the CSMA/CA algorithm, an appropriate parameters setting that guarantees both reliability 

and bounded latency for time-sensitive applications does not exist. Figure 6-c shows that when the 

maximum latency tolerated by the application is less than 100 ms the fraction of packets delivered on 

time is below 20%, for any MAC parameters setting.  

VIII.  EXPERIMENTAL ANALYSYS 

Since simulation experiments might not take into account all factors that can occur in a real 

environment, we also performed a set of measurements on a real WSN. The purpose of these 

experiments is twofold: (i) to validate the simulation results, thus confirming that the MAC 

unreliability problem also occurs in real WSNs, and (ii ) to show that the solution envisaged in Section 

VII is viable in a practical scenario. Our testbed consists of Tmote Sky sensor nodes [48] with TinyOS 

2.x operating system [49]. Tmote Sky sensor nodes use the Chipcon CC2420 radio transceiver [42] that 

is compliant to the 802.15.4 physical layer and supports a 250 Kbps bit rate over the unlicensed 2.4 

GHz ISM band. Instead of using the default MAC protocol shipped with the TinyOS software, we used 

TKN15.4 [50], an implementation of the 802.15.4 MAC protocol for TinyOS 2.x, developed by the 

TKN group at TU Berlin. Since the TKN15.4 source code is freely available it is possible to change the 

MAC parameters even beyond the maximum values allowed by the standard. 

In our experimental analysis we referred to the same star network scenario and common parameters 

setting considered in the simulation analysis. Although we did not deploy the WSN in a real industrial 

environment, nevertheless we ran our experiments in a working place with several sources of 

interfering signals, including many WiFi networks. Since we are using the beacon enabled mode – and 
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beacon transmission is performed by the coordinator/sink node without contention with other nodes – 

we used the beacon loss rate (as perceived at sensor nodes) as an estimate of PER, and used the 

estimated value in the corresponding simulation experiment. Clearly, the channel conditions vary over 

time, while in simulations we used the average value measured during the entire experiment. To 

increase the accuracy of our results, we performed 5 different replicas for each experiment. The results 

presented below are averaged over the 5 replicas (in the figures we also report the standard deviations). 

  
(a) (b) 

  
(c) (d) 

Figure 7. Comparison between simulation and experimental results. 

Figure 7-a compares the delivery ratio, obtained with simulation (continuous line) and real experiments 

(dashed line), when using the default parameters setting (i.e., DPS). We measured the delivery ratio 

with the retransmission mechanism enabled (RTx ON) and disabled (RTx OFF). In both cases, the 

simulation and experimental curves exhibit the same trend and are very close to each other.  

When the retransmission mechanism is enabled the experimental results are better than the 

corresponding simulation results, which may appear odd. Actually, this is due to misalignments in 

clocks of different sensor nodes which occur in real WSNs (while in simulations the clocks of all nodes 
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are perfectly synchronized). As shown in [50], if the clock misalignment of two different nodes is larger 

than the duration of a CCA, it may result in an increased number of collisions with respect to the case 

of perfectly synchronized clocks. 

In our scenario the effect of clock misalignments provides a higher delivery ratio, but at the cost of 

increased latency. We show this by means of the example depicted in Figure 8, where Node 1 is trying 

to transmit a packet to the sink node. It has already sensed the wireless medium and found it busy for 

macMaxCSMABackoffs-1 consecutive times. Thus, it has only one more chance before dropping the 

packet due to exceeded number of backoff stages. In Figure 8-a, where clocks of different sensor nodes 

are perfectly synchronized, as in simulation, Node 1 founds the channel busy again and drops the 

packet. In Figure 8-b, due to the clock misalignment between Node 1 and Node 2, Node 1 experiences a 

collision, and, according to the CSMA/CA algorithm, resets the number of backoff stages and starts a 

new access cycle. Hence, the packet has more chances to be transmitted in the latter case. This is also 

confirmed by the set of experiments where we disabled the retransmission mechanism (the results are 

also shown in Figure 7-a). Of course, disabling retransmissions reduces the probability of successful 

transmission and, hence, the delivery ratio. However, it also nullifies the effect of clock misalignments 

as collided packets cannot be retransmitted. Hence, the experimental results tend to be slightly worse 

than the corresponding simulation results. 

 

Figure 8. Effects of clock misalignment on packet transmissions. 

The experimental measurements shown in Figure 7-a validate our previous simulation results, and 

confirm that the MAC unreliability problem occurs in real WSNs too. We performed further 

experiments to check whether our envisaged solution, i.e., using higher MAC parameter values, may be 



23 

effective in a real environment. Figure 7-b shows the delivery ratio when using the SPS and NPS sets 

defined above. Actually, both sets provide a delivery ratio very close to 100% (we zoomed on the 90-

100% range in the figure). NPS and SPS show about the same delivery ratio as in the experimental 

study we analyzed only small/medium size WSNs (up to 16 nodes). 

In addition to delivery ratio, we also measured the average latency experienced by packets (Figure 7-c) 

and the average energy consumption per delivered packet (Figure 7-d). The experimental measurements 

for latency confirm the trend observed in simulation experiments. However, Figure 7-c shows that the 

average latency in the testbed is larger than that measured in simulation experiments. This is also due to 

the effect of clock misalignments described above. Clearly, the latter becomes more and more relevant 

as the number of nodes increases (since the collision probability increases accordingly), and this 

justifies the increasing discrepancy between simulation and experimental results, as the number of 

sensor nodes increases. 

Finally, Figure 7-d compares the energy efficiency in the real experiments and simulations. As 

expected, the average energy consumption per (delivered) packet in the real WSN is larger than that in 

the simulation experiments. This is because packets take more time to be transmitted, as shown in  

Figure 7-c. The experimental results confirm that the WSN becomes more energy efficient (i.e., the 

energy per message decreases) when using SPS or NPS, instead of DPS. The only difference, with 

respect to simulations, is that curves for SPS and NPS are no more overlapped. This is because, when 

using NPS, instead of SPS, the average latency  –  and, correspondingly, the total energy consumption – 

increases more than in the corresponding simulation experiments, while the delivery ratio remains 

approximately the same (see Figure 7-c and Figure 7-b). We expect that the energy efficiency of NPS 

solution with respect to SPS increases while increasing the number of sensor nodes and/or the PER. In 

fact, as shown in Figure 6-a, for large networks (e.g., > 40 nodes) and/or large PER, the NPS delivery 

ratio is considerably higher than that of SPS.  

To summarize, our results confirm that using a CSMA/CA parameters setting different from the default 

one significantly improves the 802.15.4 performance, in terms of delivery ratio. However, the selection 

of the optimal parameter setting depends on dynamic network conditions and, hence, an adaptive 

mechanism is required for tuning the 802.15.4 parameters 
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IX. CONCLUSIONS 

In this paper we have investigated, through both simulation and experiments on a real testbed, the 

performance of IEEE 802.15.4 WSNs when power management is enabled for energy conservation. We 

have observed that sensor nodes experience a low communication reliability in terms of delivery ratio 

which may prevent the distributed sensing system from operating properly (e.g., as for a timely 

detection of events). We have referred to this issue as the MAC unreliability problem as it is originated 

by the contention-based 802.15.4 MAC protocol.  

To understand the fundamental reasons of this problem, we have performed a thorough simulation 

analysis. We have found that the problem is essentially due to the CSMA/CA algorithm used by the 

802.15.4 MAC for channel access, which is not able to efficiently handle contention when the number 

of simultaneously contending nodes is relatively high (a similar problem does not occur when using a 

Time Division or polling scheme for channel access). Although this is a problem common to all 

contention-based MAC protocols, nevertheless in the 802.15.4 MAC it is made more severe than in 

other similar cases (e.g., S-MAC) due to the MAC parameters setting suggested by the standard. 

Specifically, we have shown that the default CSMA/CA parameter values specified by the standard are 

not appropriate for WSNs exploiting power management. Furthermore, we have also shown that, with 

appropriate parameter settings we can achieve a 100% delivery ratio, at least in the scenarios 

considered in this paper. However, our simulation results have shown that, in WSNs with large number 

of nodes and/or high traffic conditions, the desired delivery ratio can be achieved only by using MAC 

parameter values not compliant with the 802.15.4 standard. More important, the increase in the delivery 

ratio is obtained at the cost of a significant higher latency, which may not be acceptable for delay-

bounded applications. In fact, we have shown that, in its current form, the 802.15.4 MAC is not 

appropriate for industrial applications with very stringent latency requirements, as it is not able to 

guarantee an acceptable reliability level subject to the required timeliness, especially if the number of 

sensor nodes is large and/or the offered load is high. Experimental measurements on a real testbed have 

confirmed all the conclusions drawn from the simulation analysis. The cost to be paid, in terms of 

additional latency and energy consumption, appears to be even higher in a real environment.  

The above analysis paves the way for further research. Since the most appropriate MAC parameters 

setting depends on the network operating conditions (e.g., number of nodes, offered load, packet loss 

rate) as well as on the Quality of Service (QoS) required by the applications (e.g., delivery ratio, 

latency, etc.) we are currently investigating an adaptive scheme which can dynamically tune the MAC 
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parameters setting to meet the applications requirements, at least for (industrial) applications without 

stringent latency requirements. Ideally, this algorithm should dynamically select the most appropriate 

parameters setting to provide the required QoS with the minimum energy expenditure, under varying 

operating conditions.  
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