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Abstract 

Energy conservation techniques for wireless sensor networks generally assume that data acquisition and 

processing have an energy consumption significantly lower than that of communication. Unfortunately, 

this assumption does not hold in a number of practical applications, where sensors may consume even 

more energy than the radio. In this context, effective energy management should include policies for an 

efficient utilization of the sensors, which become one of the main components affecting the network 

lifetime. In this paper we propose an Adaptive Sampling Algorithm that estimates on line the optimal 

sampling frequencies for sensors. This approach, which requires the design of adaptive measurement 

systems, minimizes the energy consumption of the sensors and, incidentally, also that of the radio, while 

maintaining a very high accuracy of collected data. As a case study, we considered a sensor for snow 

monitoring applications. Simulation experiments have shown that the suggested adaptive algorithm can 

reduce the number of acquired samples up to 79% with respect to a traditional fixed-rate approach. We 

have also found that it can perform similar to a fixed-rate scheme where the sampling frequency is known 

in advance. 

1. Introduction 

Wireless sensor networks (WSNs) are distributed measurement systems consisting of a large 

number of measurement units deployed over a geographical area; each unit is a low-power 

device that integrates processing, sensing and wireless communication abilities. Units acquire 

information from the surrounding environment and, after (a possible) local processing, send 

measurements to one or more collection points or base stations for further data aggregation and 

interpretation [1].  

Among the set of potential scenarios, monitoring applications can particularly benefit from 

this technology as WSNs allow a long-term data collection at scales and resolutions that are 

difficult, if not impossible, to achieve with traditional techniques [2]. In recent years, the number 

of WSN deployments for real life applications has rapidly increased and this trend is expected to 

increase even more in next years [3], [4]. However, energy consumption still remains the major 
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obstacle for the full diffusion and exploitation of this technology, even when batteries can be 

recharged, e.g., through solar energy harvesting mechanisms [5]. 

 

Table 1. Power consumption for some common radios [6]. 

Power Consumption 
Radio Producer 

Transmission Reception 

CC2420 Texas Instruments 35 mW (at 0 dBm) 38 mW 

CC1000 Texas Instruments 42 mW (at 0 dBm) 29 mW 

TR1000 RF Monolithics 36 mW (at 0 dBm) 9 mW 

 

Table 2. Power consumption for some off-the-shelf sensors. 

Sensor Producer Sensing  
Power 

Consumption 

STCN75 STM Temperature 0.4 mW 

QST108KT6 STM Touch  7 mW 

SG-LINK (1000Ω) MicroStrain Strain gauge 9 mW 

iMEMS  ADI Accelerometer (3 axis) 30 mW 

2200 Series, 2600 Series GEMS Pressure 50 mW 

T150 GEFRAN Humidity 90 mW 

LUC-M10 PEPPERL+FUCHS Level Sensor 300 mW 

TDA0161 STM Proximity 420 mW 

FCS-GL1/2A4-AP8X-H1141 TURCK Flow Control 1250 mW 

 

In last years, many energy conservation schemes have been proposed in the literature (a 

detailed survey can be found in [7]), which assume that data acquisition and processing have an 

energy consumption significantly lower than communication (as a consequence, the research 

aims at minimizing the radio activity). Only recently, the progressive utilization of distributed 

measurement systems for monitoring complex phenomena has shown that the above assumption 

does not necessarily hold. In fact, many real life applications require specific sensors whose 

power consumption cannot be neglected [8]. Table 1 and Table 2 provide the power 

consumptions of the most popular radio equipments used in sensor nodes and some off-the-shelf 

sensors, respectively (the selection of sensors has been made only to ease the reader’s 

understanding). If we also consider that acquisition times are typically longer than transmission 

ones, we can conclude that some sensors may even consume significantly more energy than the 

radio. 
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As such, energy conservation schemes aiming at minimizing the radio activity need to be 

complemented with techniques implementing an efficient energy management of the sensors.  

In this paper we propose a general approach that leverages two complementary mechanisms at 

the sensor level: (i) duty cycling (i.e., the sensor board is switched off between two consecutive 

samples); and (ii) adaptive sampling (i.e., the optimal sampling frequency is estimated online).  

In particular, we suggest an Adaptive Sampling Algorithm (ASA) that adapts the sampling 

frequencies of the sensors to the evolving dynamics of the process.  

In the Instrumentation and Measurement community the adaptive sampling approach has been 

applied to address several issues. For instance, [9] has suggested an adaptive sampling technique 

for measuring the difference in phase between the fundamental components of two signals: the 

sampling rate is increased until the phase is correctly measured or the sampling rate reaches the 

maximum sampling rate of the system.   

[10] describes a Fourier analyzer which autonomously adapts the parameters of the filters to 

match the signal components and the measuring channels. The result is that the picket-fence 

effect and leakages are reduced (but the method can be applied only to periodic signals). [11] 

presents a velocity adaptive measurement system for closed-loop position control which relies on 

the adaptation of the sampling frequency to improve the response time.  

In [12] the authors propose a decentralized approach to adaptive sampling which uses a 

Kalman filter to predict the sensor node activity and adjust the sampling frequency 

correspondingly.  

ASA is more general than the above solutions since it does not assume any hypothesis 

regarding the nature of the signal (e.g., stationarity); moreover, its computational load is 

acceptable for mid complexity WSN units. 

Since ASA identifies on-line the minimal sampling frequency guaranteeing reconstruction of 

the sampled signal it reduces the power consumption of the measurement phase by adapting the 

sampling frequency to the real needs of the physical phenomena under observation.  

By decreasing the number of acquired samples ASA also reduces the amount of data to be 

transmitted and, as a consequence, the energy consumed by the radio. In addition, the proposed 

approach can be integrated with other techniques for energy conservation acting at different 

abstraction levels (e.g., data aggregation and/or compression).  
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The paper is organized as follows. Section 2 introduces the Adaptive Sampling Algorithm. 

Section 3 presents the snow sensor that is used as a case study to assess the performance of the 

algorithm and the simulation environment used for performance analysis. Simulation results are 

finally presented in Section 4. 

2. Adaptive Sampling Algorithm: the proposed methodology 

The proposed ASA algorithm differentiates over the above presented literature by adapting 

online the sampling frequency of the sensor to the physical phenomenon under monitoring 

provided that a change in the maximum frequency is detected.  

Detecting a change in a noisy nonstationary environment is quite an open research issue 

generally addressed with a statistical approach e.g., see [13][14][15]. Here, we found particularly 

appropriate a modification of the CUmulative SUM (CUSUM) change detection test [16], widely 

used in the system control community. In particular, we configured the test to detect changes 

associated with the highest frequency Fmax of the signal, being Fmax related to the minimum 

sampling frequency FN as per Nyquist  FN > 2  Fmax. [17]. 

Frequency Fmax is not available a priori and changes over time in a nonstationary process. 

Consequently, it clearly emerges that FN changes over time as well and that, by adapting the 

sampling frequency, over-sampling is avoided, signal reconstruction guaranteed and power 

consumption reduction obtained.   

The proposed algorithm initially estimates, through a Fast Fourier transform, maxF  by using the 

first W acquired data which are assumed to be generated by a stationary process. The initial 

sampling frequency is maxFcFc = , where c  is a confidence parameter that, according to 

Nyquist, must be larger than 2 (it is common to pick a sampling frequency three to five times 

higher than the signal maximum frequency [18]). The value of maxF  can be determined with 

different techniques. Here, maxF is identified by relying on a Signal to Noise ratio philosophy: 

maxF
 
is the frequency for which the ratio between the energy of the signal up to maxF and the 

energy of the residual segment of the right spectrum starting from maxF is 100. 

To allow CUSUM for detecting the change in the maximum frequency we designed the two 

alternative hypotheses  
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which address an increment and a decrement in the maximum frequency, respectively. +ℜ∈δ  

is an user-defined confidence parameter which represents the minimum detectable frequency 

change. In other words, δ  represents the minimum percentage change in the maximum 

frequency which must be detected by ASA. Of course, this is an independent parameter which 

must be set by the user/designer, e.g., δ =3% implies that changes affecting maxF  for more than 

3% maxF  must be detected (to be intended in statistical terms). 
upF might be significantly 

influenced by the value of δ . In fact, when δ  is small then 
maxFFup ≅  and we should expect an 

increment in the number of false positives in detection. Vice versa, for higher δ s, 
2

c

up

F
F ≅  and 

the algorithm might suffer from the presence of false negatives. Obviously, 
upF  
cannot be larger 

than 
2

cF  due to the Nyquist theorem. downF  is less influenced by δ  since a decrement in the 

maximum frequency above maxFδ  is detected (aliasing effects are here not introduced).  

 

Figure 1.  Detecting a change in the maximum frequency. 

 

During operational life, a change is detected in the process when the current maximum 

frequency currF  (estimated over a W samples sequence) overcomes one of the thresholds:  
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for h  consecutive samples. An example of a frequency change is illustrated in Figure 1. When a 

change in the maximum frequency is detected the sampling frequency is modified according to 

the new value to track the process evolution. In short, ASA can be synthesized in the detection 

rule: if ( )maxFFFF currupcurr −<−   for h   consecutive samples or  if ( )maxFFFF currdowncurr −<−   for 

h   consecutive samples, then the new  sampling frequency is currc FcF = .  

The proposed algorithm is given in Algorithm 1. 

 

Algorithm 1:  Adaptive Sampling Algorithm ( )hc ,,δ  

1. Store the W  initial samples coming from the process in Dataset; 

2. Estimate maxF  on  Dataset  and set maxFcFc = ;  

3. Define 


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FF δ ;   

max)1( FFdown ⋅−= δ  ;    

4. 1h =0 and 2h =0; i=W +1; 

5. while (1) {  

6.      Acquire the i-th sample and add it to Dataset; 

7.      Estimate the current maximum frequency currF  on the sequence Dataset( i-W +1, i); 

8.      if
 
( )maxFFFF currupcurr −<−   

9.           1h = 1h +1; 2h = 0;  

10.      else if ( )maxFFFF currdowncurr −<−  

           2h = 2h +1; 1h =0; 

11.      else  1h =0; 2h = 0;   

12.      if ( 1h > h  ) || ( 2h  > h )  { 

13.            ;currc FcF =  

14.           






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⋅+=
2
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c

up

F
FF δ ; 

15.           
max)1( FFdown ⋅−= δ  ;    

16.            ;max currFF =  

17.           }   
18.    }       

 

Low values of h  (e.g., 1 or 2) allow the algorithm for quickly detecting a variation in the 

maximum frequency of the signal (but we could experience false positives inducing a continuous 
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change of the sampling frequency). On the contrary, high values of h  (e.g., 1000 or 2000) 

decrease the false alarm rate at the expenses of a slower promptness in detecting the change. The 

value of h can be either user-defined (e.g., by exploiting available a priori information about the 

process) or estimated by ASA as suggested in Algorithm 2.  

Define T  as the number of initial stationary samples used to configure h (T  must be 

sufficiently large to grant that the estimate of h converges towards its expected value): we 

suggest as estimate of h the count of the maximum number of subsequent false positives in the 

training sequence.   

 

Algorithm 2:  =h Automatic Configuration of  ASA ( )TWc ,,,δ  

1. Estimate maxF  by considering W  initial samples and set maxFcFc = ;  

2. Define 








⋅+=
2

,)1(min max

c

up

F
FF δ ;   

max)1( FFdown ⋅−= δ   ;        

3. 1h =0 and 2h =0; 

4. 1

~
h =0 and 2

~
h =0; 

5. for ( i=W +1; i < T; i++)  { 

6.      Estimate the current maximum frequency currF  on sequence ( i-W +1, i) 

7.      if ( )maxFFFF currupcurr −<−   

8.           1h = 1h +1; 2h = 0;  

9.      else if ( )maxFFFF currdowncurr −<−  

           2h = 2h +1; 1h =0;  

10.      else  1h =0; 2h = 0;   

11.      if ( 1h > 1

~
h  )  { 

12.            ;
~

11 hh =  

13.           }   

14.      if  ( 2h  > 2

~
h )  {  

15.            ;
~

22 hh =           

16.           }   
17.    }   

18.      return ( )( );~
,

~
min 21 hh  
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More in detail, Algorithm 2 operates as follows. At first maxF is estimated on the initial 

W samples of the training sequence (line 1), then 
upF

 

and 
downF  are computed according to ASA 

(line 3 of Algorithm 1). The procedure (line 7 - 16) counts the maximum number of consecutive 

samples in subsequent samples for which currF  is closer either to 
upF  (the counter is 1

~
h ) or 

downF  

(the counter is 2

~
h ). In order to be conservative h is the minimum between 1

~
h  and 2

~
h (line 18).   

The ASA algorithm runs at the base station which notifies updates of the current sampling 

frequency to remote units (the algorithm might be too complex to be executed on tiny devices). 

However, from the conceptual point of view, there would be no objection in using a 

decentralized approach which executes ASA at the sensor node level. 

3. Experimental setup 

3.1 Description of the snow sensor 

To evaluate the performance of ASA in a real application we considered a sensor developed 

for monitoring the snow composition (slope stability assessment and avalanches forecast). Such 

a sensor provides the dataset used in subsequent simulation experiments. 

The snow sensor considered in this work is a multi-frequency capacitive measuring unit 

engineered to be embedded in a remote wireless measuring system. It is composed of a probe, a 

main multi-frequency injection board capable of measuring capacity at different frequencies 

[19], and a wireless unit to be left on the mountain (for example fixed on a pole); the system is 

powered by a rechargeable battery pack. 

At each sampling cycle the snow sensor provides measurements of snow capacitance at 100 

Hz (low frequency) and 100 kHz (high frequency); such frequencies have been proved to 

differentiate water from air, snow and ice. At the same time a second sensor provides a 

measurement of the ambient temperature.  

The snow capacitances at low and high frequency and the temperature information is passed to 

the sensor node, packed in a single message and sent over the wireless channel. For each 

measurement the electronic injection board of the snow sensor makes several procedures 

(calibration, electrode pre-charging, charge sharing) in a cyclic way to obtain a reasonably stable 

and reliable measure. This activity makes the sensor very energy consuming: for instance, by 
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sampling data every 15s, the average energy consumed is 880 mJ/sample. Such a high value can 

be explained as follows: a) the sensor is an ad-hoc sensor not optimized for energy consumption; 

b) the sensor is always active (no energy management is currently available on the sensor).  

We discovered that a good duty cycle for the sensor is around 2s; such a choice leads to 

approximately 150 mJ energy consumption per sample. When the duty cycle mechanism 

substitutes the fixed sampling approach an immediate energy saving arises (here, the energy 

consumption of the sensor decreases of about 80%.)  

3.2 Sensor network configuration 

ASA can be implemented in any sensor network architecture. However, to the purpose of 

simulation, we considered a cluster-based architecture (see Figure 2). For each node, the 

sampling frequency is computed and dynamically updated at the base station and, then, notified 

to the node through special notification messages. We also defined a communication protocol 

similar to LEACH [20] for collecting data from nodes to the base station and diffusing sampling 

frequency notifications in the back direction (details are given in [21]). We implemented both 

ASA and the cluster-based communication protocol by using the TOSSIM simulation tool [22], a 

widely used simulator for WSNs. In the considered communication protocol, both nodes within a 

cluster and cluster heads use a TDMA scheme for exchanging data with the corresponding 

cluster head or base station, respectively. Each node (cluster head) remains active only during the 

time slots assigned for communication so as to minimize the radio energy consumption. Intra-

cluster interferences (i.e., collisions due to simultaneous transmissions of nodes belonging to the 

same cluster) are thus avoided by the communication protocol, while inter-cluster interferences 

(i.e., collisions due to simultaneous transmissions by nodes belonging to different clusters) can 

still occur. We modeled the effects of possible inter-cluster interferences as message losses. 

Therefore, in our simulations, messages may be missed either due to transmission errors or inter-

cluster interferences.  

The communication protocol uses an ARQ (Automatic Repeat Request) scheme based on 

acknowledgments, timeouts and retransmissions to recover missed messages. Messages not 

acknowledged within the timeout time are retransmitted up to a predefined maximum number of 

times (see [21] for details). In case of missing samples (i.e., messages which did not reach the 

base station after the retransmission), the base station uses a simple loss compensation technique 
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by replacing a missing sample with the previous one. This is a very simple approach which, 

nevertheless, proves to be effective in increasing the accuracy of the data sequence collected at 

the base station even when the wireless communication is not completely reliable. Of course, 

alternative, more complex, loss compensation schemes, e.g., based on data missing 

reconstruction, can be considered within the proposed framework.  

 

Figure 2. Cluster-based sensor network architecture. 

3.3 Figures of merit 

To measure the performance of ASA we defined the following figures of merit. 

• Sampling Fraction, defined as the number of samples acquired by the sensor according to 

ASA w.r.t. the number of samples acquired with a fixed sampling frequency. The Sampling 

Fraction aims at evaluating the efficiency of the algorithm. 

• Sensor/Radio Energy Consumption, which summarizes the total energy consumed by the 

sensor/radio subsystem. The total energy consumption of the sensor is the product between 

the energy drained by each sampling cycle and the number of samples generated during the 

simulation experiment. The total energy consumed by the radio can be modeled as  

ssiirrttR PTPTPTPTE ⋅+⋅+⋅+⋅= .
 

tT , rT , iT , sT  represent the total time the radio is in the transmitting, receiving, idle, or 

sleeping operational modes while
tP , rP , iP , sP  refer to the associated power consumptions. 

We assume in our simulations that 
irt PPP ≈≈ , and that the power consumed in the sleeping 

mode is negligible w.r.t. the power consumed in the others modalities. Therefore, in our 
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simulator, we implemented the approximated model  

aaR PTE ⋅=  

where 
aT  denotes the total time during which the radio is active (i.e., irta TTTT ++= ) and 

( )irta P,P,PmaxP = . 

• Mean Relative Error (MRE), defined as  

∑
=

−
=

N

i i

ii

x

xx

N
MRE

1

1  

where ix  denotes the thi −  sample in the original data sequence, ix  the thi −  sample in the 

data sequence reconstructed at the base station and N  the total number of samples in the 

original data sequence, respectively. MRE gives a measure of the relative error introduced by 

the algorithm in the data sequence reconstructed at the base station. To measure the accuracy 

of the temperature sequence we also considered the Mean Absolute Error, which provides 

better indications than MRE in this specific case. It is defined as  

∑
=

−=
N

i

ii xx
N

MAE
1

1 .

 

3.4 Parameter Settings and Methodology 

In our simulations we assumed that nodes are equipped with the Chipcon CC1000 radio (used in 

the MICA2 motes series) whose operating parameters (derived from [6]) are shown in Table 3. 

To set the parameters of ASA we referred to a preliminary analysis carried out in a previous 

paper [23]  suggesting W =512, c =2.1, %5.2=δ , h=40.  Finally, the parameter values used by 

the communication protocol for collecting data and diffusing sampling-rate notifications are 

reported in [21].  

Table 3. Radio Parameters. 

Parameter Value 

Radio CC1000 

Frame size 36 bytes 

Bit rate 19.2 Kbps 

Transmit Power (0 dBm) 42 mW 

Receive Power 29 mW 

Idle Power 29 mW 

Sleeping Power 0.6 µW 
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We assessed the performance of ASA by using four different datasets derived from real 

measurements with the snow sensor described in Section 3.1 in different days and conditions. 

Each dataset consists of approximately 6.000 samples acquired with a fixed period of 15s. This 

sampling frequency was chosen on the basis of a priori knowledge of the signals to be measured 

(snow capacitance and ambient temperature): it is large enough to capture quick variations (we 

should note that it is larger than necessary since we expected snow capacitance and ambient 

temperature to change over time).  

In the experiments message losses were modeled according to a Bernoulli distribution. To 

improve the accuracy of the simulation results we used the replication method with 90% 

confidence level [24]. 

In the following, when not differently specified, figures refer to experiment 2 being the most 

critical one for ASA. However, results are similar for other datasets. 

4. Simulation Results 

We divided our analysis into two parts. At first we investigated the pros and cons of using 

ASA – in terms of energy saving and impact on the data accuracy– with respect to a fixed 

sampling-rate approach. Then, we studied the influence of the communication reliability on the 

performance of the adaptive algorithm.  

 

4.1 Adaptive vs. Fixed Sampling  

In the first set of experiments we compared the evolution over time of the current maximum 

frequency maxF  computed over sliding windows of the input signal with that of maxF  as set by
 

ASA (we remind that maxFcFc = ).  

As presented in Figure 3, we appreciate the fact that ASA is effective in adapting the sampling 

frequency to the real needs of the physical phenomenon under monitoring. The Figure shows 

maxF  and 2/cF  that are the maximum frequency currently available in the signal and the 

maximum frequency detectable by ASA according to Nyquist’s theorem, respectively. 

Obviously, when  2/cF  
<  maxF

 
aliasing effects may occur but ASA reacts by increasing the 

maximum sampling frequency. 
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Initially, the sampling frequency was set to 1/15Hz up to sample 512 (we did not know the 

initial optimal sampling rate and we opted for having it overdimensioned). Then, ASA reduces 

the sampling frequency to 1/75Hz (obviously, any change in 
cF  is reflected on 2/cF ); this 

allows us for reducing the number of acquisitions while maintaining the signal reconstructing 

ability at the base station (under the no message loss hypothesis). We experience an increase in 

maxF  around sample 620 and ASA adapts 
cF  to be 1/60Hz. Finally, the increase in currF

 
around 

sample 990 induces a next increment in the sampling frequency to 1/45Hz. We note that the 

abrupt change in frequency occurring at around sample 990 introduces aliasing phenomena since 

maxF  is larger than maxF . Once nonstationarity has been detected ASA intervenes and adapts the 

frequency at sample 1030 (with a delay function of the window size W and the change detection 

mechanism, here the delay is about 40 minutes since the sampling rate is about 1 sample per 

minute and h=40). 
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Figure 3 - Sampling rate as a function of the samples. 

 

When messages are lost during communication the general trend does not change apart from a 

further delay in adapting the sampling frequency (due to the larger delay experienced by 

notification messages). 

We comment that, initially, the sensor node uses the maximum sampling rate 1/15Hz. 

Afterwards, once the base station has received W=512 samples, the new sampling frequency is 
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notified to the sensor node. Then, the base station continues to compute the sampling rate based 

on the received samples so as to adjust it to the current dynamics of the signals. 

Figure 4 shows the Sampling Fractions – with respect to both fixed sampling periods (i.e., 15s 

and the optimal) for the various datasets, and for different values of (hop-by-hop) message loss 

probability. At each hop, messages missed by the destination are retransmitted up to 2 times. 

ASA is able to reduce significantly the number of samples with respect to a traditional approach 

based on a fixed sampling frequency. The number of samples to be acquired is reduced to 21-

34% (depending on the dataset and message loss rate) with respect to the 1/15Hz sampling rate. 

Figure 4 shows that ASA may also outperform the optimal (but unfeasible) fixed-rate approach 

in terms of Sampling Fraction (and, hence, energy efficiency), especially when the 

communication is reliable (i.e., for low probability of message loss). This is a consequence of the 

fact that ASA is able to adapt the sampling frequency to the current signal dynamics, and can 

thus take advantage of current demands.  
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Figure 4.  Sampling Fraction as a function of the message loss rate for different datasets. 
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Figure 5. Total energy consumed by the snow sensor. 
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Figure 6. Energy consumed by the radio. 

 

The decrease in the Sampling Fraction provided by ASA results in a corresponding decrease 

in the energy consumption for both sensing and communication. Figure 5 and Figure 6 show the 

total energy consumed by the snow sensor and the radio, respectively for dataset 2. Note that the 

energy savings provided by ASA are not obtained at the expense of a decreased accuracy in the 

data sequence collected at the base station. Figure 7 and Figure 8 show the MRE for the snow 

capacitance at low and high frequencies, respectively, while Figure 9 presents the same index for 

the temperature. The MRE, both at low and high frequencies, remains very low (i.e., 1%-2%) 

even when the (hop-by-hop) message loss probability increases up to 30%. On the contrary, the 

MRE for the temperature is high for all datasets (see Figure 9). This is because the temperature 
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ranges from -3 to 23 °C (measurements have been done during spring time) and remains close to 

zero for a large fraction of the experiment. Thus, when the absolute value of the measurement is 

close to zero, even small deviations from such value can cause large errors. Hence, in this 

specific case we also evaluated the Mean Absolute Error (MAE), summarized in Table 4 for the 

different datasets and message loss probabilities. We can see that the average (absolute) 

deviation from the original temperature sequence is always negligible.   
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Figure 7.  MRE for low frequency capacitance as a function of the message loss. 
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Figure 8. MRE for high frequency capacitance as a function of the message loss. 
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Figure 9. MRE for temperature as a function of the message loss. 

 

 Message loss=0% Message loss=10% Message loss=20% Message loss=30% 

Dataset 1 0.06 0.07  0.07  0.07  

Dataset 2 0.07 0.08 0.07 0.08  

Dataset 3 0.08 0.07 0.06 0.07  

Dataset 4 0.09 0.10 0.09  0.10  

Table 4. MAE for the temperature as a function of the message loss in °C. 

4.2 Impact of communication unreliability 

In the previous section emerged that ASA can actually reduce the percentage of samples to be 

acquired while assuring the information to be delivered at the base station. However, its 

performance –in terms of energy efficiency– degrades as the (hop-by-hop) message loss 

probability increases (see Figures 4-6) since ASA reduces the sampling frequency by exploiting 

the temporal correlation among consecutive samples. As such, to work correctly, ASA requires 

(almost) all data to be received by the base station. Actually, the algorithm is able to tolerate a 

certain fraction of missing samples, thanks to the loss compensation mechanism (the 

phenomenon under monitoring is assumed to change slowly over time). However, when the 

percentage of missing messages becomes significant, ASA may react by increasing the sampling 

frequency. Moreover, if the communication is unreliable, notifications sent by the base station to 

sensor nodes for updating the sampling frequencies may get lost, or experience a large delay. 

Thus, a node might operate with obsolete sampling frequencies even for a long time. If the 
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sampling frequency for a sensor is higher than required, oversampling occurs. If lower, aliasing 

effects may occur. 

To make the adaptive sampling approach effective, we should thus guarantee a message 

delivery ratio (i.e., percentage of messages correctly received by the final destination) in both 

directions close to 100%, e.g., through an acknowledgment-based retransmission protocol as 

here considered. In [25] it has been found that retransmission is the most efficient approach to 

data transfer reliability in wireless sensor networks. Obviously, message retransmission increases 

the delivery ratio at the cost of additional energy consumption: it is thus important to evaluate the 

impact of message retransmissions in terms of energy consumption for the overall system (both 

sensor and radio). A set of experiments was then carried out in which the maximum number of 

retransmissions per message, rtxmax_ , changed in the [0,3] range.  

Figure 10 shows the impact of the rtxmax_  value on the Sampling Fraction for increasing 

message loss probabilities. As expected, the Sampling Fraction decreases significantly when the 

maximum number of retransmissions per message increases, as the delivery ratio increases 

accordingly, as shown in  Figure 11. With 2≥rtxmax_ , more than the 85% of messages are 

delivered to the final destination (even with a link message loss probability of 30%), and the 

performance of ASA is similar to, or even better than, that of the (unfeasible) fixed-rate 

approach.  

 
Figure 10.  Sampling fraction for different rtxmax_  values. 
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Figure 11.  Delivery ratio for different rtxmax_  values. 

In terms of energy consumption, a reduced Sampling Fraction caused by an increased delivery 

ratio immediately turns out into a lower sensor energy consumption, as shown in Figure 12. 

Things are not so straightforward for the energy consumption of the radio, which is given by the 

sum of two different components with contrasting behavior. On one hand, a large number of 

retransmissions leads to a high energy consumption. On the other, a low sampling frequency 

implies a lower number of messages to be transmitted.  

 
Figure 12.  Total energy consumed by the sensor for different rtxmax_  values. 

The total energy consumed by the radio equipment is shown in Figure 13. We can see that, in 

any case, it is much smaller than the energy consumed by the sensor. We appreciate the fact that 

ASA is really effective as the additional costs required for achieving a message delivery ratio 
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close to 100% are largely compensated by the reduction in the number of samples to be acquired 

and transmitted.  
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Figure 13.  Total energy consumed by the radio for different rtxmax_  values. 

Obviously, the above results strongly depend both on the specific sensor and the chosen sensor 

node platform. To show the effect of different sensor platforms, we also considered sensor nodes 

equipped with the CC2420 radio. The CC2420 radio is an evolution of the CC1000 one 

considered in previous experiments and is used, for example, in TmoteSky sensor nodes. It 

allows for a bit rate of 250 kbps (the bit rate provided by CC1000 is 19.2 kbps) and its power 

consumptions in transmit and receive modes are shown in Table 1 (here we assumed that the 

power consumption in idle mode is equal to that in receive mode, while the power consumption 

in the sleep mode is negligible). Figure 14 shows the total energy consumed by the sensor node 

for communication when using the two different radios, under the assumption that each message 

is re-transmitted up to two times. The energy consumption is significantly lower when using the 

CC2420 radio as the bit rate is more than one order of magnitude larger than the CC1000 one at 

the cost of a comparable power consumption. Since the energy cost for communication is lower, 

when using the CC2420, a larger number of retransmissions per message can be allowed. By 

increasing the delivery ratio, this results in a significant decrease in the sensor (i.e., overall) 

energy consumption.  

The above results confirm the effectiveness of ASA in reducing the overall energy 

consumption in the presence of energy-hungry sensors. Moreover, the evolution from CC1000 to 

CC2420 is paradigmatic of a general trend observed in the last year in the field of wireless 
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technologies for sensor networks where there has been a significant increase in the bit rate 

provided by the sensor nodes with only a limited increase in their power consumption.   
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Figure 14. Comparison of total energy consumed for data communication when using the 

CC1000 and CC2420 radio equipments ( 2=rtxmax_ ) 

5. Conclusions 

  The paper proposes an Adaptive Sampling Algorithm (ASA) for wireless sensor networks 

which is capable of dynamically estimating the optimal sampling frequency of the acquired 

signals. The algorithm has been originally conceived to reduce the energy consumption of a 

prototype sensor for snow monitoring applications; however, the proposed approach is general 

and can be used in all cases where the process to be monitored exhibits a slow variation over 

time.  

We performed an extended simulation analysis, based on traces derived from real 

measurements, by using the TOSSIM simulation tool. We found that ASA is able to reduce the 

number of acquired samples up to 79% w.r.t. the fixed sampling frequency, while generally 

preserving the accuracy of the data sequence collected at the base station. This results in a 

corresponding energy saving of both the sensor and the radio. We have also found that, thanks to 

its ability to adapt the sampling frequency to the real activity, our algorithm may perform similar 

to, or even better than, a fixed-rate scheme where the optimal sampling frequency is known in 

advance.  
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Since ASA exploits temporal correlation among successive data sample, it requires a message 

reliability close to 100% to work efficiently. We evaluated through simulation the cost, in term 

of additional energy consumption of the radio, for fulfilling this requirement. We found that 

benefits largely predominate over costs as the energy consumption of the overall system (i.e., 

both the sensor and the radio) is reduced. We are aware that this conclusion strongly depends on 

the specific sensor, whose power consumption is significantly larger than that of the radio but the 

analysis makes the point. In general, one should evaluate whether it is more convenient to 

acquire redundant data and tolerate some message loss, or minimize the number of acquired data 

and ask for a 100% reliability in message delivery. Obviously, the optimal strategy depends on 

the relative cost, in terms of energy consumption, for data acquisition the communication, i.e., on 

sensors and sensor nodes that are used. 
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