Energy Conservation in Wireless Sensor Networks with Mobile Elements

Giuseppe Anastasi
Pervasive Computing & Networking Lab (PerLab)
Dept. of Information Engineering, University of Pisa
E-mail: giuseppe.anastasi@iet.unipi.it
Website: www.iet.unipi.it/~anastasi/

Overview

- WSN-MEs
- Power Management & Node Discovery
 - Schedule-based
 - On demand
 - Asynchronous
 - Fixed
 - Adaptive (Learning-based, Hierarchical)
- Conclusions and Research Questions
Wireless Sensor Networks with Mobile Elements

Static Sensor Networks

Funneling Effect!
Other advantages of using WSN-MEs

- **Connectivity**
 - A sparse sensor network may be a feasible solution for a large number of applications

- **Cost**
 - Reduced number of sensor nodes \(\Rightarrow\) reduced costs

- **Reliability**
 - Single-hop communication instead of multi-hop communication
 - Reduced contentions/collisions and message losses

Components of a WSN-ME

- **Regular Sensor Nodes**
 - Sensing (source of information)
 - Data Forwarding
 - May be Static or Mobile

- **Sink Nodes (Base Stations)**
 - Destination of Information
 - Collect information directly or through intermediate nodes
 - May be Static or Mobile

- **Special Support Nodes**
 - Neither source nor destination of information
 - Perform a specific task (e.g., data relaying)
 - Typically mobile
Mobile Elements

- Relocatable Nodes
 - Limited mobility
 - Do not carry data while moving
 - Typically used in dense networks
- Mobile Data Collectors
 - Mobile Sinks
 - Mobile Relays
- Mobile Peers
 - Regular mobile nodes

Relocatable Nodes

Sink (Base station)

Relocatable node

Relocatable node
Mobile Sink/Relay: Potential Applications

- Air Quality Monitoring in Urban Areas
 - Sensors in strategic locations along streets.
 - Mobile Nodes are on board of buses
 - Collect data and transport to the sink node

- Urban Sensing Applications
 - Mobile nodes are personal devices
 - Sensor-to-vehicle communication
 - ...

Mobile Peers
Mobile Peers

Mobile Peers: Potential applications

- Mobile devices equipped with
 - (mobile) sensors
 - Camera, audio recorder, accelerometer, ...
 - Wireless communication
 - 3G, WiFi, Bluetooth, ...
- Can be used to implement
 - Personal Sensing applications (e.g., Cence me)
 - Group Sensing applications (e.g., garbage watch)
 - Participatory sensing applications
Data-driven approaches
- data compression
- data prediction
- ...

Power Management (duty cycling)
- The sensor duty cycle should be as low as possible
 - to maximize the lifetime
- Contacts could be missed
- Efficient ME Discovery
 - Maximize the number of detected contacts while minimize energy consumption

Power Management and Mobile Element Discovery
How to detect all potential contacts while minimizing the energy consumption at sensors?
PerLab

Ideal Scenario

Sensor Node

PerLab

In practice

- MDC arrival times are typically not known in advance
- Sensors nodes cannot be always active
 - Low duty cycle δ to save energy
- Discovery Protocol
 - Strictly related with power management
Power Management Schemes

- Scheduled rendezvous
- On-demand
- Asynchronous (Periodic Listening)

Scheduled Rendez-vous schemes

- Sensor nodes and ME agree on the visit time
 - at least with some approximation
- Simple to implement and energy Efficient
- Synchronization required
- Not applicable in some contexts

On-demand schemes

- The ME wakes up the static node when it is nearby

 - **Passive wakeup radio**
 - Use energy harvested by the wakeup radio (e.g., RFID)
 - **Active wakeup radio**
 - Low-power radio + high-power radio

Passive Wakeup radio

- Use the energy **passively** received through the wakeup radio to activate the data radio
- Very limited distance
 - Few meters (suitable only for robotic networks)
 - The distance can be increased at the cost of
 - Increased complexity on the wakeup radio (increased cost)
 - Increased wakeup time
- Additional hardware required

Passive Wakeup Radio

WISP
- Wireless Identification and Sensing Platform
- Integration of Tmote Sky mote with a passive RFID tag
- RFID reader on the ME
- Maximum distance: few meters

Active Wakeup Radio

Radio Hierarchy
- Scenario
 - Mobile opportunistic network of handheld devices
- Multiple-radio strategy
 - Higher-level radio for data exchange, lower-level radio for discovery
 - Bluetooth and WiFi, Mote and WiFi
 - The lower-level radio is used to discover, configure and activate the higher-level radio
 - Bluetooth used to discover a nearby WiFi Access Point or node and configure the WiFi interface

Active Wakeup Radio

Hierarchical Power Management

- Scenario
 - Opportunistic networks of handheld devices
 - WSNs with all mobile nodes
- Multiple radio’s strategy
 - Low-power radio for discovery
 - High-power radio for both discovery and data exchange
 - High-power radio is awakened by the low-power radio
 - E.g., mote radio and WiFi

Active Wakeup Radio

Network Interrupts

- Scenario
 - Sensor Networks (with MEs)
- Two different radios
 - A primary high-power radio usually in sleep mode
 - Used for data communication
 - Control Low-power radio always powered on
 - Used for control messages
 - A node can activate the high-power radio of a nearby node by sending it a beacon through the low-power radio

Limits of On-demand schemes

- On-demand schemes require multiple radios
 - which may not available in current sensor platforms
- The range of the wakeup radio is typically limited
 - Few meters for passive radios
- Active radios have a longer range, but they consume energy
 - The energy consumption should be below 50 μW
 - And the wakeup range should be as long as the communication range

Power Management Schemes

- Scheduled rendezvous
- On-demand
- Asynchronous
 - Active Wakeup
 - Passive Wakeup
Asynchronous schemes

- ME emits periodic beacons to announce its presence
- SN wakes up periodically (*period listening*), and for short periods
 - Very low duty cycle for saving energy

Asynchronous (Periodic Listening)

\[T_{ON} = T_B + T_D \]
\[\delta = T_{ON}(T_{ON} + T_{OFF}) \]
Classification of Periodic Listening Schemes

- **Fixed Schemes**
 - Both the beacon period and the sensor node’s duty cycle are fixed over time

- **Adaptive Schemes**
 - **Learning-based schemes**
 - The arrival time of the ME is predicted based on the past history, and the duty cycle is adjusted accordingly
 - **Hierarchical schemes**
 - Two different operation modes for sensor nodes
 - Low-power mode (most of the time)
 - High-power mode (when the ME is nearby)
Fixed Schemes

- Fixed Beacon Period
- Fixed Sensor’s Duty Cycle (δ)
 - A low duty cycle saves energy, but contacts may be missed
 - A high duty cycle increases the % of detected contacts, but decreases the sensor’s lifetime

Key Question

- Which is the optimal duty cycle that allows to detect all contacts with the minimum energy expenditure?
- The optimal duty cycle depends on a number of factors that are difficult (if not impossible) to know in advance.

Fixed Schemes

- Fixed approach
 - Fixed Beacon Period
 - Fixed Sensor’s Duty Cycle (δ) [Mat05] [Jai06]
 - A low duty cycle saves energy, but contacts may be missed
 - A high duty cycle increases the % of detected contacts, but decreases the sensor’s lifetime

This approach is quite inefficient, especially when sensor nodes spend a long time in the discovery phase

Learning-based approaches

Adaptive Beacon Rate

- Reference Scenario
 - All sensor nodes are mobile
 - Fixed sink with limited energy budget
 - Energy harvesting

- Basic idea
 - Adaptive beacon emission rate
 - Time is divided in slots (1-hour duration)
 - For each time slot the expected contact probability is derived and updated dynamically based on the past history
 - The beacon emission rate is varied according to the estimated probability and the available energy
 - Based on reinforcement learning

Learning-based approaches

Resource-Aware Data Accumulation (RADA)

- Reference Scenario
 - Static Sensor Nodes (with energy limitations)
 - MEs are resource-rich devices

- Basic idea
 - Fixed (Periodic) Beacon Emission by ME
 - The wake-up period (i.e., duty cycle) of the sensor node is adjusted dynamically, depending on the past history
 - Based on DIRL framework

- DIRL framework
 - Based on Q-learning
 - Autonomous and adaptive resource management
 - suitable to sparse WSNs

DIRL framework

- **Set of tasks to be executed**
 - Task priority
 - Applicability predicate

- **Set of states**
 - State representation includes system and application variables
 - Hamming distance used for deriving distance between states and aggregate similar states

- **Utility Lookup Table: Q(s, t)**
 - Q(s,t) gives the long-term utility of executing task t in state s

- **Exploration/Exploitation strategy**
 - Exploration with probability ε
 - A random task is executed
 - Exploitation with probability $1-\varepsilon$
 - The best task, according to Q-values, is selected

DIRL Algorithm

1. Initialize $Q(s,t)$ for all s and t
2. Observe current state s
3. Choose task t to execute
4. Execute t and observe new state s'
5. Compute reward r for task t in current state s and move to state s'
6. Update $Q(s,t)$ based on reward r and state s'
7. Make state s'
8. Yes: Is s' similar to any existing state s''?
 - No: Add s' to the list of known states
 - Yes: $Q(s,t)$
9. $Q(s,t) = (1-\alpha)Q(s,t) + \alpha(r + \gamma Q(s'))$

Simulation Results

Sparse Scenario

Limits of Adaptive Schemes

- Learning-based schemes perform well when the ME has a regular mobility pattern
 - The regularity can be learned and exploited for predicting next arrivals
- Performance degrades significantly as the randomness in the mobility pattern increases

Hierarchical Discovery schemes

- **Basic idea**
 - The duty cycle is adjusted dynamically (as in learning-based approaches)
 - **Low duty cycle** when the ME is far
 - **High duty cycle** when the ME is about to arrive
 - Information about the ME location are provided by the ME itself

- **Dual Radio**
 - **Low-power radio** for discovery and a **high-power radio** for data communication
 - Already considered as on-demand schemes

- **Dual Beacon**
 - **Long-range beacons** for announcing the presence of the ME in the area
 - **Short-range beacons** for informing that communication can take place

Dual Beacon Discovery (2BD)

- **ME uses two different beacon messages**
 - Long-range beacons (LRB) for announcing the presence of the ME in the area
 - Short-range beacons for informing that communication can take place

- **Sensor nodes alternate between two duty cycles**
 - Typically in Low duty cycle
 - Switch to High duty cycle upon receiving a LRB
 - Enter the communication phase upon receiving a SRB
 - Switch back to Low duty cycle at the end of the communication phase

2BD Protocol

Simulation Results

Sparse Scenario
False Activations

\[E_{FA} = \left(\frac{R}{r} - 1 \right) \cdot T_{out} \cdot \left[\delta_H \cdot P_{RX} + (1 - \delta_H) \cdot P_{ST} \right] \]

Simulation Results

Sparse Scenario
(false activations never occur)

Dense Scenario
(false activations may occur)
Schedule-based power management

- **Can be used only in some special cases**

On-demand wakeup

- **Interesting!**
- **However...**
 - Active wakeup radio consume energy
 - \(\text{Low power consumption} \times \text{long time} = \text{large energy consumption} \)
 - Passive wakeup radios do not consume additional energy, but they have very short ranges (few meters)
 - In both cases, special hardware is required

Periodic Listening

- **Can be always used**
 - As it does not require special hardware
 - Finding the appropriate parameters may not be so easy
 - Using fixed parameters may result in inefficient solutions

- **Periodic Listening with adaptive parameters is more efficient**
 - Learning-based schemes are suitable for scenarios where ME moves with a regular pattern
 - Hierarchical schemes (based on dual beaconing) are more flexible
 - False activations may occur in dense scenarios
Is there any room for new research activities?

- **Adaptive strategies**
 - More complex (and efficient) adaptive strategies can be investigated
 - Adaptive strategies for
 - Energy conservation + energy harvesting = unbounded lifetime
- **Optimization over multiple parameters**
 - Data generation process
 - ME arrival pattern (next arrival)
 - Available space in the local buffer
 - Available energy (energy harvesting)

Is there any room for new research activities?

- **WSN with all mobile nodes (opportunistc networks)**
- In opportunistic networks a lot of work has been done for data dissemination
- Less attention has been devoted to node discovery (related with power management)
 - Although nodes spend most of time for discovery (rather than for data dissemination).

Available at http://info.iot.unipi.it/~anastasi/