
Adding emulation to Planetlab nodes∗

Paper ID: 137 – 12 pages

Marta Carbone
Dip. di Ingegneria dell’Informazione

Universita‘ di Pisa, Italy
marta.carbone@iet.unipi.it

Luigi Rizzo
Dip. di Ingegneria dell’Informazione

Universita‘ di Pisa, Italy
rizzo@iet.unipi.it

ABSTRACT
Network testbeds have become very popular to support re-
search on network protocols and distributed applications.
When it comes to reproducing network behaviour, testbeds
range between two extremes: use a fully emulated network,
as in EmuLab, which yields very reproducible experiments
but might be a poor representation of reality; or commu-
nicate through the real Internet, as in PlanetLab, resulting
in more realistic but less reproducible scenarios. Having
both features available in the same testbed, and being able
to choose and mix the two at will, is clearly interesting for
researchers.

In this paper we make two contributions. First, we show
how we ported the Dummynet emulator to Linux, making
the tool available on that platform. Second, and more im-
portantly, we present an extension of the PlanetLab testbed
to add emulation capabilities to all nodes. Our extension
uses Dummynet as the basic emulation engine, and provides
mechanism to let PlaneLab users independently and concur-
rently configure emulated links on which to run their exper-
iments. This gives users the advantages of emulation while
not giving up the opportunity of running their tests in a large
and heterogeneous testbed with realistic network conditions.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques

General Terms
Emulation, experimentation, performance

∗The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement n.224263
– Onelab2.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM CoNEXT 2009, December 1–4, 2009, Rome, ITALY.
Copyright 2009 ACM X-X-X-X/XX/XX ...$5.00.

Keywords
Internet, network testbeds, emulation, performance
evaluation

1. INTRODUCTION
In recent years we have seen a significant growth

in the deployment of testbeds to support research on
network protocols and distributed applications. The
primary motivation behind most of these testbeds is
the same: make available to researchers a system that,
for its size and features, would not affordable for indi-
viduals or even single institutions. Depending on the
case, the scale of the testbed is achieved as a result
of a community contribution, where each participant
contributes computing and networking resources; or
thanks to the support of funding agencies, which spon-
sor strategic initiatives such as GENI [3] and FIRE [2].

Such testbeds are generally made of a large number
of computing nodes, managed by a central authority,
and equipped with various storage and communication
devices. Depending on the circumstance, the intercon-
nection network (and the testbed itself) can be concen-
trated in a single location, or distributed across a large
geographical area.

The actual target of each testbed varies. Some of
them, such as EmuLab [1], are focused on providing
a very reproducible environment, in terms of node ca-
pacity or network resources. Here, the system makes
heavy use of virtualization and emulation techniques to
configure the environment so that researchers will not
suffer from external interference while running their ex-
periments.

Other testbeds address specific aspects, such as the
study of wireless networks (ORBIT [9]), or routing pro-
tocols (VINI [14]), or mesh networks (roofnet [16]),
or sensor networks (MoteLab [25]). In these cases,
the testbed includes components to address the spe-
cific problem domain. As an example, ORBIT has well
defined placement of nodes so that one can correlate
radio behaviour with distance or position; it also has
programmable radio sources to create specific interfer-
ence patterns, and test even low-level aspects of the

behaviour of the MAC protocol. VINI provides sup-
port for creating tunnels and virtual interfaces, so one
can create his own overlay to experiment with routing
protocols.

Finally, testbeds such as PlanetLab [20] are more ori-
ented towards providing a realistic snapshot of the real
Internet. In this case, heterogeneity is a desirable fea-
ture of the platform, even if the price to pay is some
unpredictable network behaviour. In fact, even unpre-
dictability can be seen as a feature rather than a bug
of the platform, because it exposes applications to the
same conditions that would experience when deployed.

This paper focuses on PlanetLab, which is a large dis-
tributed testbed, and on its software, MyPLC [7] that
lets users create their own instance of the testbed.

PlanetLab owes much of its popularity to the fact
that institutions (especially academic ones) can become
part of a large and growing platform with only a mod-
est contribution in terms of resources. In return, users
gain access to hundreds of nodes distributed across the
Internet. The heterogeneity of systems and network lo-
cations, together with the size of the testbed, permits
experimenting with network dynamics in a way that
would be difficult to achieve within a laboratory or in
a concentrated testbed.

A side effect of this heterogeneity is some lack of con-
trol on the reproducibility of experiments, because net-
work conditions between nodes are typically unknown
and variable over time. Emulation techniques are in-
deed well known and widely used to produce controlled
environments, but PlanetLab nodes do not have this
feature.

The main contribution presented in this paper is an
extension that we developed to add emulation capabili-
ties to PlanetLab. With this work, PlanetLab users gain
the ability to configure, independently of each other, the
actual features of the network. The extension has been
implemented by porting the Dummynet [18] emulator
to Linux, and this is a second contribution presented in
this paper. Dummynet is extremely popular among re-
searchers, and over time we have received many requests
to make it available to other platforms than FreeBSD.
We took the chance of the OneLab2 project [12], in
which this work is being done, to address this request
and make Dummynet available to Linux users.

The rest of the paper is structured as follows. Goals
and motivations of this work are presented in Sec-
tion 2, followed by a description of the components in-
volved in our work: the PlanetLab testbed, and the
Dummynet emulator. Section 5 documents how we
ported Dummynet to Linux, while Section 6 shows how
emulation is made available to PlanetLab users. Ex-
perimental results, including performance data, are pre-
sented in Section 7. Finally, Section 8 gives an overview
of related work.

2. GOALS AND MOTIVATIONS
PlanetLab [20] is a network testbed made by roughly

a thousand of nodes distributed throughout the world
and contributed by participating organizations. This
distributed testbed gives users and researchers a realis-
tic snapshot of the Internet where they can deploy new
software, run experiments and measure network perfor-
mance.

Figure 1: The PlanetLab architecture. Nodes

are spread among participating sites, and con-

nected to the Internet. The PLC is the central

management site for the testbed.

The testbed is widely used and interesting due to the
number of hosts and to the relative heterogeneity of net-
work links and machines it provides. On the weak side,
the lack of any control on the conditions of the network
make it hard to obtain reproducible experiments, and
even harder to run tests under specific conditions. This
calls for the introduction of some form of configuration
of the network features. Emulation is one possible ap-
proach, that is used successfully in other platforms such
as EmuLab where the emulation is implemented by a
configurable network interconnection, using FreeBSD
machines running the Dummynet software to provide
the desired emulation of network features.

Figure 2: The Emulab architecture. A

programmable switch is used to build the

user-defined topology, including passing traffic

through nodes dedicated to emulation. Other

nodes are available for running user experi-

ments.

In PlanetLab, the use of a centralized emulator is

not possible because there are no controlled devices on
the path between nodes and the rest of the network.
In previous work [17], we did propose and implement
a PlanetLab extension that added external devices in
charge of emulation. These devices, called Dummynet-
Boxes, were placed as shown in Figure 3 on the path be-
tween nodes and the rest of the network, and were run-
ning a standalone version of FreeBSD, equipped with
Dummynet, and configurable under user control to em-
ulate the desired network features.

Figure 3: Emulation using Dummynet in an ex-

ternal device.

While available now as part of the OneLab testbed,
the solution based on external emulation boxes has a
disadvantage in terms of deployment. Users are reluc-
tant to add new devices to their network, so the avail-
ability of this feature is limited.

In response to this problem, we opted for a differ-
ent approach, namely implementing emulation directly
within the nodes. The issue now becomes how to im-
plement the desired functionality in an effective way.

Figure 4: In-node emulation

One possibility was to create a new, custom emulator
to be installed on the nodes. While doable in principle,
this option was immediately dismissed given that multi-
ple emulation software already exist and could be used
without having do create a new one from scratch.

Given that PlanetLab nodes run Linux kernels, a sec-
ond option was to use one of the emulation packages
available on that platform: among them, there are tc [5]
and NISTnet [19]

tc is already available on PlanetLab nodes. However,
it is designed as a traffic shaper and link scheduler, so
its native emulation capabilities are not an exact match
for our requirements: in particular, tc cannot model
propagation delays and reordering, features that can be
added with the use of the netem [21] package.

At least two reasons discouraged us from using tc.
First, the need to use an additional module (netem)
to implement, and only in a partial way, the desired

functionality, puts tc in no better position than any
other solution. Second, tc is already used on PlanetLab
nodes to control the traffic generated by the various
users. Using it for emulation as well would require a
lot of effort to avoid undesired interactions between the
emulator and the traffic control policies, which in turn
would make integration and deployment harder.

The NISTnet alternative was dismissed mostly be-
cause of our lack of experience with the tool. NISTnet
is not available as a standard component in PlanetLab,
so again we should rely on a third party module, and
our learning curve would have been somewhat steep.

On the contrary, we do have significant experience
with the Dummynet emulator, which has most of the
functionalities we need, and is very easy for us to extend
as we do maintain the code. The fact that the tool is
not natively available on Linux is not a major drawback
because the porting effort would be relatively small, and
well compensated by the advantages, which include the
following:

• our previous emulation solution [17] is based on
Dummynet, so we can reuse the configuration tools
already developed for it;

• researchers are also familiar with Dummynet and
its features, because of its use on Emulab and
FreeBSD. As a consequence, it will be easy for
most of them to make an effective use of this new
facility;

• a port of Dummynet to Linux was often requested
to us by researchers who use this platform for their
work, and making a port would also address this
request;

• Dummynet already has a large number of features,
combined with a flexible packet classifier. Also, we
are planning several extensions to the tool, which
would be harder to integrate in a system such as
tc or NISTnet that we do not maintain directly;

• Dummynet is not used by other components in the
testbed, and this removes the risk of interferences
that we would have if we decided to rely on an
already used component.

As a result, we decided to provide in-node emulation
using a Linux port of the Dummynet emulator.

3. PLANETLAB
In order to describe how we added emulation to

PlanetLab, it is useful to spend a few words on the
architecture of the testbed.

PlanetLab is an initiative of a group of researchers in-
terested in planetary-scale network services, where par-
ticipating institutions contribute computing and net-
work resources to build a distributed testbed. This plat-

form, depicted in Figure 1, is made of two types of com-
ponents: one central controller, called PLC (PlanetLab
Central), and several computing nodes which is where
users can run their experiments.

3.1 The Planetlab Central (PLC)
The PLC is the core of the system. It runs the testbed

management software and acts as a server for nodes
and users. It contains a database with all relevant in-
formation on nodes and users of the system, accessible
through a web interface or an XML-RPC API. It also
contains a file server, used by the nodes in the system
to download their initial software, additional packages,
and software updates.

Nodes willing to be part of the testbed must down-
load from the PLC, and install on their disks, a custom
version of Linux together with a set of management
programs. During regular operation, nodes periodically
contact the PLC to fetch software updates, collect infor-
mation on users allowed to access the platform, possibly
report usage and other statistics.

3.2 Slices, users, slivers
The PLC gives participating organizations the right

to create one or more slices, which are the administra-
tive entities used to account for resource usage. A slice
can be accessed by one or more users, whose credentials
are stored on the PLC. In turn, information on existing
slices and users is stored in the database on the PLC,
and made available to nodes, which can use it to per-
form access control.

Using the web interface or the XML-RPC API, users
can instantiate a slice on one or more nodes of the
testbed. Instantiating a slice on a node means creat-
ing an sliver on the given node, i.e. an account and a
set of resources accessible to all users belonging to the
slice. The sliver is implemented using a “virtual server”
(see next Section) which is the container used to confine
operations performed by the sliver. Users can log into
all nodes where their slice is instantiated.

3.3 Node and sliver management
Users connect to the nodes and run their experiments

in a virtualized environment. The virtualization pro-
vides resources isolation between the slivers, and gives
users the illusion of a node with dedicated resources.
All this is done using two components, namely the
Linux-Vservers [6] system and the VNET [15] system.

The Linux-Vservers is a virtualization system that
provides a private filesystem namespace to each sliver,
while still allowing all slices to see the full set of de-
vices available on the node. Each sliver runs within a
dedicated vserver context where it has limited root per-
missions, meaning that it can run a subset of the system
calls. Operations that require real root access (i.e. must

Figure 5: The structure of a PlanetLab node,

and the interaction between slivers and root con-

text.

run in the so-called root context), are controlled through
the vsys service described in the next Section.

The VNET system implements traffic isolation be-
tween slivers. It ensures that the first sliver that
“claims” a local TCP or UDP port (by calling bind()

on it) becomes the owner of the port, and will be the
only one allowed to send or receive data on that local
port. This feature is necessary to prevent interference
between experiments that try to run servers on the same
port.

Related to virtualization, nodes also use the tc traffic
controller to limit the amount of traffic generated by
each sliver so that none of them is able to monopolize
the communication link.

3.4 The vsys service
Users are king (root) in their vserver, but their priv-

ileges on operating on the root context are limited and
strictly controlled using the vsys service. The vsys ser-
vice is the mechanism used by slivers to perform cer-
tain privileged operations that may affect the whole
node. The service works by creating one or more file de-
scriptors accessible on the sliver that communicate with
backend programs running in the root context and, as a
consequence, able to run any command with no restric-
tions. The system lets the administrator specify which
backends are available to each sliver, and also passes
the identity of the sliver to the backend, so that specific
access policies can be implemented.

4. DUMMYNET
The second component of our system is the

Dummynet network emulator [18], developed under
FreeBSD several years ago [23], and later imported

into other BSD-derived operating systems, including
Mac OS X.

Dummynet is a component of the operating system
that can intercept network traffic and manipulate it,
emulating the behaviour of one or more network links
with programmable features. It is made of three parts:
the emulator itself, dummynet; a packet classifier, ipfw;
and a user interface, /sbin/ipfw. The first two parts
run in the kernel of the operating system, and commu-
nicate with the user interface through a control socket.

4.1 The emulator
dummynet (the emulator) can create multiple in-

stances of an object called pipe, which in its basic ver-
sion emulates a network links with programmable band-
width, delay and queue size.

Figure 6: A Dummynet pipe.

Other pipe configuration options exist to specify dif-
ferent queue management policies (e.g. RED), to model
some MAC layer effects such as variable transmission
times and link level overheads, and also to simulate very
simple packet drop patterns.

A second object implemented by the emulator is
called queue, and it models just a single FIFO queue
(the left part of a pipe). Multiple queues can be con-
nected to the same communication channel (the right
part of a pipe), and queues are scheduled for service ac-
cording to a specific link scheduling algorithm (at the
moment WF2Q+). This part is actually very important
because many MAC protocols can be modeled as sched-
ulers, and this will make the system easily extensible.

Figure 7: Dummynet queues and their use for

scheduling or emulating MAC protocols.

Some emulators [21, 19] provide features to intro-
duce specific loss or packet reordering patterns. In
Dummynet, we use a different approach based on the
following reasoning. In a real network, losses and re-

ordering normally occur as a result of some specific traf-
fic pattern (e.g. causing queue overflow), network con-
figuration (e.g. routing flaps), or link conditions (e.g.
poor SNR or excessive conflicts on a shared link). As a
consequence, we try to emulate the mechanism that are
the root cause of the phenomenon, and rely on users to
drive the system so that the actual loss will occur as
a result. This approach is especially important when
testing applications that respond to losses by changing
their traffic generation: in such cases, a model that gen-
erates losses irrespective of the actual traffic is likely to
give inaccurate results.

4.2 The packet classifier
Dummynet works in close cooperation with a pro-

grammable packet classifier called ipfw, that lets the
user intercept selected traffic in various points of the
protocol stack, and direct it to a pipe (or a queue), as
shown in Figure 8. ipfw is programmed by writing a set
of numbered rules, each containing zero or more options
used to match packets, and one action specifying what
to do with matching packets. Matching options include
addresses, ports, protocols, protocol flags and various
packet’s metadata. Traffic selection is performed by
testing a packet against each of the rules, in numeric
order, and performing the action associated to the first
matching rule. When using Dummynet, the typical ac-
tion is to send the packet to a pipe or queue, which
will in turn emulate the behaviour of the link, delay-
ing or dropping the packet as appropriate. After the
emulation, non-dropped packets are sent back into the
network stack for their regular processing. By properly
programming the system, traffic can be passed through
multiple different pipes, thus permitting the emulation
of moderately complex network topologies.

Figure 8: The flow of packets through network

stack, packet classifier and pipes.

4.3 User interface
Users interact with Dummynet by deciding which

traffic should be intercepted, and to which pipes it

should go. The configuration of the pipes (in terms
of bandwidth, delay and so on) can be set or modified
at runtime as needed.

Setting up a pipe, and passing traffic to it, is
extremely simple, as in the following example:

Configure dummynet:
set bandwidth and delay of the emulated links
ipfw pipe 5 config bw 4Mbit/s delay 7ms
ipfw pipe 8 config bw 1Mbit/s delay 10ms
Configure ipfw:
pass selected traffic through the emulator
ipfw add 120 pipe 5 out dst-ip 10.2.0.0/24
ipfw add 130 pipe 8 out dst-ip 10.1.1.0/24

Here, we define two pipes with different features,
and pass to each of them outgoing traffic for two
different subnets.

The configuration of pipes and queues can be changed
at runtime without disrupting the operation of the net-
work. Similarly, ipfw rules can be added or deleted at
runtime to modify the configuration of the system, and
without disruption on traffic not affected by those rules.
As a consequence, with a proper configuration of the
classifier (e.g., by reserving certain sets of ports or ad-
dresses to each user), multiple users of a system can
share the same instance of Dummynet without interfer-
ing with each other. This feature is used in this work
to let different PlanetLab users share the emulator.

Multiple rules can send packets to the same pipe,
which means that the user can create arbitrary aggre-
gations of traffic sharing the same emulated link. This
is important when, e.g., one wants to gradually add
interfering traffic to an application under test, while
passing other traffic (such as a control connection, DNS
requests, remote disk accesses and so on) through a dif-
ferent pipe to avoid interference.

5. THE LINUX PORT
As mentioned before, a Linux port of Dummynet is

interesting even outside the scope of this project, be-
cause of the popularity of the Linux platform. Also,
a Linux version is also interesting because it lets
people use Dummynet on embedded devices running
OpenWrt [8], which is more and more used in various
research prototypes as well as actual deployments.

Porting code that runs in user space is gener-
ally straightforward, and this case was no differ-
ent. All we had to do was provide a replacement
for some library functions (strlcpy(), strtonum(),

sysctlbyname()) that were not present in Linux, and
wrappers or renaming macros for some other functions
(e.g. heapsort() or setprogname()).

Adapting a kernel subsystem to different operating
systems is instead a lot more challenging, because of the
lack of cross-platform standards in terms of program-
ming interfaces (APIs), headers, kernel services, and

even naming conventions. Having done similar work in
the past, we found that a very effective strategy in these
cases is to keep the original source code unmodified as
much as possible (but within reason). This approach
has the double benefit of pointing out platform-specific
assumptions (with the opportunity to fix them in the
original version), and making it easier to repeat the
work when changes are made in the base version of the
code.

Overall, this particular port involved the following
steps:

• adapting headers. This was done by creating a tree
of additional “system headers”, meant to add miss-
ing headers, or replace Linux headers that were in
conflict with the FreeBSD ones, or were missing
some required items;

• add small wrapper macros to disable or rede-
fine certain identifiers. As an example, redefine
the macros DEFINE SPINLOCK, LOG SECURITY and
LOG NOTICE;

• fix certain areas of code that made platform-
specific assumptions. As an example, make ex-
plicit calls to to 64-bit division routines, provide a
unique path for dropping packets, do not always
put ip len and ip off fields of the IP header in net-
work order. Such changes should be integrated in
the original code to improve portability;

• disable parts of the code that were not interesting
for this project and were too system-specific. As
an example, we disabled approximately 10 match-
ing options (out of 48) and 5 actions (out of 19)
that were referring to FreeBSD-specific subsys-
tems;

• add glue code to recreate the FreeBSD kernel APIs
on top of the Linux ones. This will be described
in more detail in the following Sections.

The most time-consuming parts of the work were re-
lated to the design, and specifically i) find the best lo-
cation to put header information, ii) decide where to
apply the “within reason” principle and when changes
to the original source were acceptable, and iii) identify
a good replacement for the kernel subsystems used by
Dummynet.

5.1 Hooking into the network stack
A first issue was to identify how to hook the classi-

fier and the emulator into the network stack. Our two
requirements are to intercept traffic in two points (one
upstream, one downstream, as in Figure 8), and to rein-
ject packets back into the stack after some delay.

In the original version of Dummynet, pack-
ets were intercepted by modifying some functions

in the packets’ path (ip input(), ip output(),

ether input(), ether output()), making them call
the classifier. The latter would return back those pack-
ets that were not dropped or delayed. Reinjection of
delayed traffic was done by explicitly calling the same
functions as above, with packets marked in a way to
avoid further reinjection in the classifier.

Kernel modifications are not necessary anymore.
Many operating systems now support the insertion of
generic packet filter functions on the packets’ path. This
mechanism is called pfil on FreeBSD, and netfilter on
Linux.

When a packet filter function is registered, it gets
called on each packet traversing the network stack,
and it should tag the packet with an indication of its
fate, which is normally PASS (let the packet progress
through its destination) or DROP (drop the packet1).

The netfilter system is particularly interesting for our
purposes because it supports a QUEUE tag, that causes
such packets to be diverted from the regular path and
passed to a queue handler function, together with ap-
propriate metadata. The queue handler can delay or
manipulate the packet at will, and must eventually call
the function nf reinject() which causes the packet
to be finally go back into the stack after the point of
intercept.

In the current Linux version of Dummynet, we reg-
ister two netfilter functions on the PRE ROUTING and
POST ROUTING hooks, and one queue handler function.
The netfilter functions unconditionally2 tag all packets
as QUEUE, and leave to the queue handler the task to
run the packet classifier and possibly the emulator, and
reinject packets into the stack after a suitable delay.

Figure 9: Netfilter hooks in dummynet

Figure 9 shows how the mechanism works in case of
an incoming packet. In this example, the packet goes
to the netfilter function ipfw call() which uncondi-
tionally tags it as QUEUE. Then the packet goes to

1The DROP tag can also be used when the filter wants to
keep the packet for itself, and will reinject the packet in the
stack at a later time.
2This will be optimized in future versions, avoiding unnec-
essary calls to the queueing subsystem.

the netfilter queue subsystem, which in turn calls our
queue handler, ipfw2 queue handler(). The function
is in charge of calling the packet classifier, and depend-
ing on the outcome, either pass the packet immedi-
ately to nf reinject() or call dummynet io(), which
is the entry point of the emulator. Eventually, the
packet is delivered back to the network stack calling
nf reinject().

5.2 In-kernel packet representation
Across the various operating systems, the represen-

tation of network packets within the kernel varies in
the details but not much in the approach. Typically,
the data portion is stored in one or more linked buffers,
and an external descriptor (or a set of function argu-
ments) is used to store metadata such as packet length,
a pointer to the data, direction, related interfaces, flags.

In FreeBSD and other BSD-derived systems, meta-
data are stored in a structure called mbuf, which holds
all the above information, including a pointer to an in-
ternal (to the mbuf) or external block of memory con-
taining the actual packet data. Data is in turn stored
in a linked list of buffers. In Linux, there is a similar
arrangement except that the container for metadata is
called sk buff.

In our port, whenever we receive a packet to pro-
cess, we first create a stripped-down mbuf initialized
with relevant fields fetched from the sk buff. This way,
the code to access the packet data or metadata can re-
main unmodified and simply refer to the usual mbuf

fields. On return, the external mbuf descriptor is sim-
ply destroyed, and the packet is reinjected completely
unmodified. Note that some emulation features (such
as error injection) may involve modifying the data ar-
eas, in which case one has to be careful because the
mbuf/sk buff content is often shared by multiple parts
of the kernel. Also note that one may need to modify
the metadata as well. As an example, on Linux, when a
packet is received and can be associated to an existing
socket, the socket is timestamped with the reception
time. When we delay incoming packets, we must also
update the timestamp in the socket, or program such as
ping, which use the socket’s timestamp, would return
invalid results.

5.3 Other system services
The adaptation of other system services has been rel-

atively straightforward, and normally provided by writ-
ing wrappers around the Linux functions so that we
could export a FreeBSD-compatible API.

In the original version of Dummynet, locking uses
both mutexes and rwlocks. In the Linux port, we have
mapped both types of locks to spin lock bh(). Opti-
mizing the choice of the locking mechanism to improve
concurrency has been postponed, because the original

code is undergoing similar changes.
The memory allocator just required some conversion

macros to map FreeBSD calls (malloc(), free()) into
the equivalent Linux functions (kmalloc(), kfree()).
FreeBSD uses an optimized allocator called “UMA” for
objects of fixed size; in this port, we simply remapped
the uma * calls into malloc()/free() calls. Again, the
use of an optimized allocator (also available on Linux)
will be done in future versions of the code.

Timer support on FreeBSD relies on a periodic sys-
tem timer, running with a configurable rate, which is
used to trigger pending timeouts. Kernel subsystems
can schedule the invocation of a function after a cer-
tain timeout using the “callout” system. Linux offers
a similar functionality, with only a different interface
and naming. The conversion is again done by means of
simple wrapper functions.

The typical value for the periodic timer is 1 KHz on
FreeBSD, resulting in 1 ms accuracy of the timing. On
some Linux versions, the default timer runs at 250 Hz,
giving 4 ms accuracy. The resolution can be changed
easily, but going below 100 µs is problematic because
of the extra system overhead. Also, there are certain
uninterruptible blocks of code (such as large memory-
to-memory copies, or critical sections) which may well
consume tens of microseconds, so even with higher timer
resolution we cannot increase the accuracy by much.

The infrastructure for managing loadable kernel mod-
ules relies on a slightly convoluted set of macros, func-
tions and compiler/linker support to create appropriate
dependency lists at compile time, and enforce them at
runtime. Also in this case we had to adapt the FreeBSD
macros mapping them to Linux ones. In this case the
conversion was not totally straightforward as it relies
on a lot of preprocessor tricks, but the details are not
particularly interesting.

5.4 Linux port summary
As a result of this work, we have created a Linux

port of Dummynet which is made of a single kernel
module, ipfw mod.ko, containing both the packet clas-
sifier and the emulation module, and a control program,
/sbin/ipfw, which provides the user interface. The two
parts communicate through the sockopt mechanism,
whereas packet are passed between the kernel and the
module using the netfilter API. The current code has
been tested on a wide range of Linux versions, includ-
ing the 2.4 family (used in some OpenWrt distributions)
and several versions of the 2.6 family (2.6.22 to 2.6.28).
The code is available at
http://info.iet.unipi.it/∼luigi/dummynet/ .

6. ADDING EMULATION TO PLANET-
LAB NODES

Putting together all the components described so far,

the architecture of our in-node emulator for PlanetLab
becomes relatively simple.

At the lowest level, we use a Dummynet kernel mod-
ule and its related control program /sbin/ipfw running
in the root context to do the emulation. On top of this,
we use the vsys service to control how slivers access
the emulator. A vsys frontend, netconfig, is used to
“claim” a TCP or UDP port and configure emulation on
it. A vsys backend, ipfw-be, does the parameter check-
ing and possibly configures Dummynet or updates the
existing configuration.

No kernel or other system modifications are required
to install the above components, so existing PlanetLab
nodes can be updated by simply downloading and in-
stalling the required packages (one for the root context,
one for the sliver) from the PLC. This will make the
integration of emulation as easy and fast as any other
software update.

6.1 Isolation between users
To avoid that users of the different slivers interfere

with each other in configuring the emulator, we adopted
a strategy similar to the one implemented by the VNET
system described in Section 3.3: a sliver “claims” a net-
work resource (in this case, a TCP or UDP port) as its
own, and after that no other slivers are allowed to con-
figure emulation on that port until it is released or the
claim expires.

The claim is made the first time a sliver runs the
frontend program to configure emulation on a given
port:

./netconfig -p <port number> <parameters>

This results in the backend program being run,
which in turn checks that the desired port is still
available (or already in use by the same sliver), and
then performs the desired configuration. The actual
commands run by the backend depend on the param-
eters specified; the following is an example output
corresponding to the use of port 5678 (here the port
number is also used as the base for rule number and
pipe number):

ipfw pipe 15678 config <parameters>
ipfw pipe 25678 config <parameters>
ipfw delete 5678
ipfw add 5678 pipe 15678 src-ip $ME src-port 5678

// timeout sliver
ipfw add 5678 pipe 25678 dst-ip $ME dst-port 5678

As we can see, we configure two rules, one per
direction, and one of them also stores, in the comment
field, the identity of the sliver who claimed the port,
and the timeout value for the rule. The sliver name is
used to check that subsequent updates come from the
same sliver, whereas the timeout is used by a separate

daemon to expire rules (and pipes) that are not in use
anymore.

Modifications of the configuration, as well as release
of the port(s) reserved by a sliver, can be made by
simply reinvoking the netconfig program, with the
same port number, and suitable parameters. Note that
netconfig can be also invoked from within the code
that is part of the experiment, so that variable network
conditions can be obtained without direct user inter-
vention.

6.2 Resource management and logging
It is useful, from an administrative point of view, and

also for management purposes, to keep track of users
of the emulation service and their requests. In fact,
emulation consumes resources (ports, but also buffers
for packets that are staging in the emulator) and we
do not want users to abuse the system. Also, the total
throughput of the system is limited by the available
bandwidth on the physical link, so we should keep track
of concurrent requests and at least warn users if they are
making requests that cannot be fulfilled because they
exceed available resources.

In our system, logging is done by calling external pro-
grams both in the vsys backend ipfw-be, and in the
daemon in charge of cleaning up expired configurations.

6.3 Building and installing
The extension described here has been developed us-

ing a local instance of the MyPLC [7] software. The
build system that is part of MyPLC allows an easy in-
tegration of new software into the platform.

Emulation extension is made of two software packages
(RPMs):

• one for the root context emulator, which includes
the ipfw mod.ko, the /sbin/ipfw control pro-
gram, and the periodic cleanup program. It must
be installed in the root context;

• one for the frontend, to be installed in the vserver
context by all slivers who want to use the exten-
sion;

The vsys backend is packaged together with other vsys
backends in the vsys-script package.

7. EXPERIMENTAL RESULTS
Dealing with an emulation system, the performance

evaluation refers mostly to finding the limits of appli-
cability of the system itself. In particular, we want to
find out:

• how much the introduction of the additional kernel
module impacts the performance of the node;

• what is the accuracy of the emulation system;

• how frequently we can tolerate reconfigurations of
the emulator.

To measure the overhead introduced by Dummynet,
and the accuracy of the emulator, we have run a number
of tests where the machine under test receives ping re-
quests from an external machine, connected through a
full-duplex, 100 Mbit ethernet switch. We measure ping
response times machine with and without Dummynet,
and with different load conditions. We use ping be-
cause ICMP requests are processed entirely within the
kernel, so there is no unwanted interaction with user
space process scheduling. Absolute performance num-
bers are not that important, but we do want to see
if there are statistically significant deviations from the
behaviour without the emulator (our baseline).

In our tests we used the following load conditions:

• IDLE. Completely idle system, no extra process is
running except the basic system services;

• KERNEL. A number of process are accessing de-
vices and memory filesystems, continuously issuing
system calls that cause heavy kernel load;

• USER. Several processes run the loop
extern volatile a; for(;;) a++;,
consuming the full CPU available, and accessing
the memory bus, in user space;

While not exhaustive, these conditions try to reproduce
a reasonable subset of the load conditions that a node
can experience.

In all conditions, we measure the ping response times
without the Dummynet module, and with the module
loaded using various configurations. The results (both
average and standard deviations) are presented in Ta-
ble 1.

IDLE KERNEL USER
avg sd avg sd avg sd

without Dummynet
default 82.0 5.93 103.0 8.75 76.9 4.16

with Dummynet
IPFW-1 79.1 3.91 107.5 6.25 77.1 5.18
IPFW-100 98.5 15.1 119.6 5.74 97.5 14.4

Dummynet and two 10ms pipes (times in ms)
HZ=1000 19.63 0.310 19.71 0.319 19.62 0.260
HZ=250 21.99 1.148 22.05 1.152 22.06 1.166

Table 1: Average and standard deviation of re-

sponse times in the various tests. All times are

in microseconds except for the bottom two rows,

where they are in milliseconds. Please refer to

Section 7.1 for an explanation of the apparently

surprising results with and without load.

7.1 Dummynet overhead
The row labeled “default” represent the baseline case.

Note that the USER column, in this and other rows,

reports faster response times than the IDLE column.
This is not a mistake, and while apparently surprising,
it has a very clear explanation which is useful to give,
also to show how careful one should be when doing cer-
tain measurements.

On many operating systems, the CPU enters a power
saving state when there is no work to do. The exit
from this power saving state, generally triggered by an
interrupt, requires a significant amount of time. We
are precisely in this situation during our IDLE tests,
where requests are infrequent enough to cause this phe-
nomenon. In the USER case, the CPU is fully used,
and no power saving mode is entered, reducing response
times because our workload did not involve system calls
or other uninterruptible tasks.

The same explanation applies when comparing the
baseline with the case when Dummynet is loaded but
it only has one rule installed (IPFW-1). Dummynet
causes the kernel to run a function at every timer tick.
This extra load is enough to reduce the use of power
saving states, and explains why the case IPFW-1/IDLE
seems faster than the case default/IDLE.

A reasonable estimate of the Dummynet overhead
can be given by the KERNEL column. In this case,
the CPU is fully busy with kernel tasks, some of which
are not interruptible. This causes an increase of the
response time compared to the IDLE case, and also a
larger difference between the “default” and “IPFW-1”
cases, approximately 4.5 µs on our hardware. This dif-
ference can be reasonably charged to the setup of the
two invocation of the packet classifier (done through the
netfilter hooks and the queue handler), and is an esti-
mate of the minimum overhead caused by the emulator.

The cost of the classifier processing also depends on
the number of rules in the configuration. The row
IPFW-100 presents the response times with 100 match-
ing rules, which is representative of a large classifier
configuration. In this case we see that 200 matches
(100 in each direction) cause an additional 20 µs delay
in the response, or 100 ns per rule. Figure 10 shows
the distribution of response times with 100 rules. As
we see, in this case not only the average times increase,
but also the variability becomes large.

7.2 Emulator accuracy
As discussed in Section 5.3, the accuracy of our em-

ulator depends on the resolution of the timer tick. The
value used on PlanetLab nodes gives 1 ms granular-
ity. This roughly corresponds to the duration of a
maximum-size ethernet frame at 12 Mbit/s, or to a
minimum-size frame at 512 Kbit/s. The granularity af-
fects the error on the timing of individual events (packet
transmissions or receptions), but does not accumulate
over multiple events, so we can still simulate links at
higher rates. Table 1 also shows two experiments with

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.08 0.1 0.12 0.14 0.16 0.18 0.2

fr
ac

tio
n

ms

Response time distribution

IPFW-100/IDLE
IPFW-100/USER

IPFW-100/KERNEL

Figure 10: Distribution of response times with

100 matching rules and variable load.

a 10 ms pipe in each direction, on a kernel with 1 ms
timer. The same experiment is repeated on a kernel
with the timer running with a 4 ms granularity. In
both cases, the timer resolution reflects directly into
the standard deviation of the test.

The timing accuracy on individual events is also af-
fected by the jitter introduced by the kernel in respond-
ing to interrupts. We can estimate a lower bound for
this value comparing the the IDLE (or USER) and
KERNEL columns. In our experiments, we see as much
as 30 µs of difference in the response times, which tells
us that it would be unreasonable to increase the timer
resolution much beyond the 200 µs range.

7.3 Reconfiguration cost
Reconfiguring the emulator involves calling the fron-

tend, which in turn uses the vsys service to call the
backend program. This results in a few calls to
/sbin/ipfw to update pipes and classifier configura-
tion.

A single invocation of /sbin/ipfw takes less than
10 ms to run even on a very slow system (a PlanetLab
node running in qemu). The entire process, even in the
current, non-optimized form (both the backend and the
frontend are implemented by shell scripts) can run in
150 ms. Optimizing the two programs, and running the
code on a real machine should easily allow at least 10
reconfigurations per second, which is well beyond what
a normal user should expect to do.

8. RELATED WORK
The two research areas most related to this work are

network testbeds and network emulation systems. In
particular, network testbeds have been an active re-
search area in recent years, resulting in the development
and availability of several testbeds addressing different
needs.

8.1 Network testbeds
We have already introduced PlanetLab in Section 3,

and discussed its features through this paper.
EmuLab is another popular network testbed, also

publicly available to researchers, but differing from
PlanetLab in several aspects. EmuLab is a public
facility, with nodes mostly concentrated in a single
location and interconnected through a programmable
switch that is used to create user-specified topologies.
EmuLab’s strength is the availability of a wide range
of experimental environments such emulation, simula-
tion, real wireless testbed involving radio and sensors
network. Recent work [22] add to the platform the
so called “virtualized emulation”, where different vir-
tualization techniques are introduced in order to best
exploit the physical resources. In EmuLab, each ex-
periment requires to define a topology, which can be
done using the Ns-2 [10] syntax or by a Java GUI. This
configuration also covers the definition of hardware and
software features of the nodes, wireless capabilities, and
mobility. After this stage, the platform maps virtual
requirements on physical resources, trying to minimize
the use of the physical resources.

EmuLab provides a large building with fixed and mo-
bile nodes. Some devices are equipped with 802.11
a/b/g wifi interfaces. Mobile nodes have wireless card
attached to robots able to moving around a small area
in the lab and can be controlled and programmed by the
user. An additional feature of EmuLab is the hardware
support for Universal Software Radio Peripheral [13]
(USRP) devices, (and related software GNU Radio [4])
connected to some EmuLab nodes. The integration of
the Ns-2 [10] in EmuLab makes simulation capabilities
available to the platform.

ORBIT [9] (Open Access Radio Grid Testbed) is a
testbed based on a laboratory equipped with a large
indoor radio grid emulator of around 400 radio nodes,
which can be dynamically interconnected to create arbi-
trary topologies and wireless channels behaviour. Each
node is connected to the network by three cards, two
wireless and a wired one. The first is used to perform
experiments, the latter is usually used as a control chan-
nel. ORBIT provides a useful environment for wire-
less application testing, where wireless capabilities such
the channel, transmission power, transmission rate and
other high level parameters can be configured. In this
way it is possible to change the node behaviour, making
possible to configure the nodes acting like access points,
pure wireless nodes or any other kind of device. This
grid of nodes provides a very flexible testing environ-
ment for wireless research.

VINI is a testbed platform aimed to test lower layer
software, such as routing protocols. VINI provides a
wide, shared physical infrastructure where researchers
can define arbitrary network topologies and test pro-

tocols and applications. Using the VINI platform it is
possible for researchers to run their conventional rout-
ing software, in a wide environment, exposed to real
network conditions and real traffic. Researchers are
allowed to control the network behaviour too, repro-
ducing particular network events or injecting controlled
failures in the network, in order to test and measure
their software in every possible situation.

8.2 Emulators
The second related work area refers to network emu-

lators. Here the spectrum of available solutions ranges
from dedicated hardware solutions, generally targeted
to the evaluation of MAC protocols, and software-based
solutions that run in standalone devices or within stan-
dard operating systems.

The latter category includes some very popular so-
lutions, already mentioned in this paper, and variants
thereof. Again, we have described Dummynet in depth
in this paper. A tool with similar features is NIST-
net [19], which runs on Linux and also supports the em-
ulation of multiple links with programmable bandwidth
and features. Another solution that is sometime used
under Linux is the combination of tc [5] and netem [21],
where the former does the classification and traffic shap-
ing, whereas the netem part is in charge of simulating
propagation delays and reordering. A significant draw-
back of tc is that it cannot do shaping on the incoming
path, which limits its usefulness when the data source
is not on a machine equipped with the emulator.

Several researchers have extended Dummynet to pro-
vide additional features such as programmable packet
dropping. Other works, such as Modelnet [24], have
used modified versions of Dummynet as the basis for a
larger emulation system.

The basic emulation features of the above packages
can be used to build complex topologies, by using mul-
tiple physical or virtual instances of the emulator, and
interconnecting them with the nodes in the network
through a programmable switch (again, a real one or
a virtual one).

Dummynet makes this possible through the reinjec-
tion of traffic in pipes multiple times. The switching
in this case occurs by an appropriate programming of
the packet classifier. Imunes [26] is a system based
on FreeBSD which supports multiple, virtual network
stacks within a single instance of the operating system.
Each virtual stack can implement a node in the em-
ulated topology, and connect to other nodes through
its own instance of Dummynet. The obvious extension
of this concept is to run multiple emulator instances
within virtual machines (Xen, VMWare, VirtualBox,
Qemu) and connect them as required.

Emulation features are also present in network simu-
lators such as Ns-2 [10] and Ns-3 [11], which can drive

the simulator with live traffic, and interact in this way
with real traffic sources and links.

9. CONCLUSIONS
We have presented how the Dummynet emulator has

been ported to Linux, and how the emulator has been
used to add emulation capabilities to PlanetLab nodes.
The port of Dummynet to Linux makes the emulator
available to a large set of users who rely on Linux as
their platform of choice. It also makes the emulator
available on OpenWrt, which runs on a large variety of
low cost devices.

The PlanetLab extension presented here is also useful
for researchers, because it complements the features of
the testbed with a useful mechanism to achieve more re-
producible experiments. Our measurements show that
we can run the emulator in a node without a significant
impact on performance, and with reasonable accuracy
at least at low or medium data rates. We expect signif-
icant improvements in both performance and accuracy
as we optimize the port to use more efficient primitives
available on Linux.

As of this writing, the extension presented here are
being integrated in the OneLab version of PlanetLab,
and work is in progress for the inclusion into the main
testbed. PlanetLab nodes will be able to exploit the
platform by simply installing a couple of RPM packages,
without the need for a full update.

The system described in this paper is under active
development. In addition to some performance opti-
mization to the emulator, and more powerful configu-
ration options, we are developing some extensions to
Dummynet which include better emulation of wireless
MAC, as documented in [18]. These will become readily
available to PlanetLab users as they are integrated in
the system.

10. REFERENCES
[1] EmuLab - total network testbed.

http://www.emulab.net/.
[2] FIREWORKS. http://www.ict-fireworks.eu/.
[3] GENI: Exploring Networks of the Future.

http://www.geni.net/.
[4] GNU Radio. http://gnuradio.org.
[5] Linux Advanced Routing & Traffic Control.

http://lartc.org/.
[6] Linux Vservers. http://linux-vserver.org.
[7] MyPLC. http://www.planet-lab.org/doc/myplc.
[8] OpenWrt. http://openwrt.org/.
[9] Orbit. http://www.orbit-lab.org/.

[10] The ns-2 Network Simulator.
http://nsnam.isi.edu/nsnam/index.php.

[11] The NS-3 Network Simulator.
http://www.nsnam.org/.

[12] The Onelab2 Project. http://www.onelab.eu/.

[13] USRP: Universal Software Radio Peripheral.
http://www.ettus.com.

[14] VINI, A virtual network infrastructure.
http://www.vini-veritas.net/.

[15] VNET: PlanetLab Virtualized Network Access.
http://www.planet-lab.org/doc/vnet.

[16] J. Bicket, D. Aguayo, S. Biswas, and R. Morris.
Architecture and evaluation of an unplanned
802.11 b mesh network. In Proc. of the 11th Int.
Conference on Mobile computing and networking,
pages 31–42. ACM New York, NY, USA, 2005.

[17] M. Carbone, G. Cecchetti, L. Rizzo, F. Checconi,
and A. Ruscelli. Wireless link emulation in
OneLab. 2nd International Workshop on Real
Overlays And Distributed Systems (ROADS)
Warsaw (Poland), July 2007.

[18] M. Carbone and L. Rizzo. Dummynet revisited.
Technical Report, May 2009. Available at
http://info.iet.unipi.it/∼luigi/dummynet/
dummynet09.pdf.

[19] M. Carson and D. Santay. Nist net: a linux-based
network emulation tool. SIGCOMM Comput.
Commun. Rev., 33(3):111–126, 2003.

[20] B. Chun, D. Culler, T. Roscoe, A. Bavier,
L. Peterson, M. Wawrzoniak, and M. Bowman.
Planetlab: an overlay testbed for broad-coverage
services. SIGCOMM Comput. Commun. Rev.,
33(3):3–12, 2003.

[21] S. Hemminger. Network emulation with NetEm.
In Linux Conf Au, 2005.

[22] M. Hibler, R. Ricci, L. Stoller, J. Duerig,
S. Guruprasad, T. Stack, K. Webb, and
J. Lepreau. Large-scale virtualization in the
emulab network testbed. In USENIX 2008 Annual
Technical Conference, pages 113–128, 2008.

[23] L. Rizzo. Dummynet: a simple approach to the
evaluation of network protocols. SIGCOMM
Comput. Commun. Rev., 27(1):31–41, 1997.

[24] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan,
D. Kostić, J. Chase, and D. Becker. Scalability
and accuracy in a large-scale network emulator.
ACM SIGOPS Operating Systems Review,
36:271–284, 2002.

[25] G. Werner-Allen, P. Swieskowski, and M. Welsh.
MoteLab: a wireless sensor network testbed. In
IPSN ’05: Proc. of the 4th International
Symposium on Information processing in sensor
networks. IEEE Press, 2005.

[26] M. Zec and M. Mikuc. Operating system support
for integrated network emulation in imunes. In
Proc. of the 1st Workshop on Operating System
and Architectural Support for the on demand IT
InfraStructure (OASIS), Boston, MA, 2004.

