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ABSTRACT
Packet scheduling, together with classification, is one of the
expensive processing steps in systems providing tight band-
width and delay guarantees at high packet rates. Sched-
ulers with near-optimal bandwidth distribution andO(1)
time complexity in the number of flows have been proposed
in the literature, they adopt techniques astimestamp round-
ing andflow grouping to keep their execution time small.
However even the two best proposals in this family either
have a linear complexity component in the number of groups
or require a number of operations proportional to the length
of the packet during transmission. Furthermore, no stud-
ies are available on the actual execution time of these algo-
rithms.

In this paper we make two contributions. First, we present
Quick Fair Queueing (QFQ), a newO(1) scheduler that pro-
vides near-optimal guarantees, and is the first to achieve that
goal with a constant cost also with respect to the number of
groups and the packet length. The QFQ algorithm has no
loops, and uses very simple instructions and data structures
that lend themselves very well to a hardware implementa-
tion.

Secondly, we have developed production-quality imple-
mentations of QFQ and of its closest competitor, S-KPS,
and we have used them to perform an accurate performance
analysis, in terms of both run times and service guarantees.
Experiments show that QFQ fulfills the expectations, with
a runtime on a low end workstation of about 110 ns for an
enqueue()/dequeue() pair (only twice the time of DRR, but
with much better service guarantees).

1. INTRODUCTION
QoS provisioning is a long-standing problem whose

solution is hindered by business and technical issues.
The latter relate to the use and scalability of resource
reservation protocols and packet schedulers, which are
necessary whenever over-provisioning is not an option.

An IntServ approach can provide fine-grained per-
flow guarantees, but the scheduler has to deal with a
potentially large number of flows in progress1 (up to 105

1In [10] a flow is denoted as in progress during any time

and more, as reported in a recent study [10]). Besides
memory costs to keep per-flow state, the time complex-
ity and service guarantees of the scheduling algorithm
can be a concern.

A DiffServ approach aggregates flows into a few
classes with predefined service levels, and schedules the
aggregate classes without need for resource reservation
signaling. This drastically reduces the space and time
complexity, but, within each class, per-flow scheduling
may still be needed if we want to provide fairness and
guarantees to the individual flows.

The above considerations motivate the interest for
packet schedulers with low complexity and tight guar-
antees even in presence of large number of flows. Round
Robin schedulers have O(1) time complexity, but all
have an O(N) worst-case deviation with respect to the
ideal amount of service that the flow should receive over
any given time interval.

More accurate schedulers have been proposed, based
on flow grouping and timestamp rounding, which fea-
ture O(1) time complexity and near-optimal deviation
from the ideal amount of service (see Section 2). The
two most efficient proposals in this class, the scheduler
proposed in [14], hereafter called Group Fair Queueing
(GFQ) for brevity, and Simple KPS (S-KPS ) [8] use
data structures with somewhat high constants hidden
in the O() notation. In particular, on each dequeue op-
eration, GFQ needs to iterate on all groups in which
flows are partitioned, whereas S-KPS has to do (in par-
allel with packet transmissions) a number of operations
proportional to the length of the packet being transmit-
ted.

Our contribution: In this paper we present Quick
Fair Queueing (QFQ), a new scheduler with O(1) time
complexity, implementing an approximated version of
WF2Q+ with near-optimal service guarantees similar
to GFQ and S-KPS.

The key innovation of QFQ is the partitioning of
groups of flows into four sets, each represented by a
machine word. All bookkeeping to implement schedul-

interval in which the inter-arrival time of its packets is lower
than 20 seconds.



ing decisions is based on manipulations of these sets.
Multiple groups and flows can be moved at once be-
tween sets with simple CPU instructions such as AND,
OR, XOR and Find First bit Set (FFS).

The major improvement of QFQ over the previous
proposals is on performance: our algorithm has no
loops, and the simplicity of the data structures and in-
structions involved makes it well suited to hardware im-
plementations. The execution time is within two times
that of DRR across a wide variety of configurations, and
consistently about three times faster than S-KPS. In ab-
solute terms, on a low end desktop machine, with 1000
backlogged flows DRR and QFQ take 50 and 110 ns per
enqueue()/dequeue() pair, respectively. In these condi-
tions, S-KPS takes 350-400 ns. As the number of flows
and queue size grows, all algorithms exhibit a propor-
tional increase in the running time, mostly due to cache
misses, going up to 95 ns for DRR, 150 ns for QFQ, and
500 ns for KPS. Section 7 reports more detailed results.

Paper structure: Section 2 complements this in-
troduction by discussing related work. In Section 3 we
define the system model and other terms used in the
rest of the paper. Section 4 presents the QFQ algo-
rithm in detail, proving its correctness and illustrating
its implementation. Section 5 gives an analytical evalu-
ation of the (worst case) service guarantees. In Section 6
we present the results of some ns2 simulation to com-
pare the delay experienced by various traffic patterns
under different scheduling policies. Finally, Section 7
measures the actual performance of the algorithm on
a real machine, comparing production quality imple-
mentations of QFQ, S-KPS, and several other sched-
ulers (FIFO, DRR and WF2Q+) taken from Linux and
FreeBSD distributions.

2. BACKGROUND AND RELATED WORK
Packet schedulers are evaluated based on their time

(and space) complexity and on their service properties.
Several service metrics have been defined in the litera-
ture, including relative fairness [9], and Bit- and Time-
Worst-case Fair Index (B-WFI and T-WFI [2, 4], see
the definitions in Section 5; in the paper we will refer
to both as WFI for brevity).

B-WFIk and T-WFIk represent the worst-case devi-
ation (in terms of service and time, respectively) that
a flow k may experience over any time interval with
respect to the service it would receive from a perfect
weighted bandwidth sharing server.

The WFI is somehow a more accurate service metric
than just the worst-case per-flow lag or packet comple-
tion delay with respect to an ideal, perfectly fair system
(hereafter we call just lag and packet delay these quan-
tities). In fact, even a scheduler guaranteeing the min-
imum possible lag or packet delay may still suffer from
a high WFI. It happens if the scheduler oscillates be-

tween the following two situations. First, during some
time interval, the scheduler gives a flow more service
than what the flow should receive according to its re-
served share. Then the scheduler forces the flow to “pay
back” for the extra service previously received, i.e., the
scheduler gives to the flow less service than the reserved
share until the balance breaks even.

The WFI measures the extent of these oscillations,
which can even hinder per-flow lag and delay guaran-
tees in a hierarchical setting [2]. In the end, a low WFI
is essential to provide tight fairness and delay guaran-
tees in such a setting. In addition, the B-WFI can also
be used to predict the minimum amount of service guar-
anteed to each flow over any time interval, whereas, if
the arrival pattern is known, the T-WFI can be used to
compute the maximum completion time of each packet.

Round Robin (RR) schedulers lend naturally to O(1)
implementations with small constants. Several variants
have been proposed, as e.g., Deficit Round Robin [13],
Smoothed Round Robin [3] and its evolution G-3 [6],
Aliquem [11] and Stratified Round Robin [12], to ad-
dress some of the shortcomings (burstiness, etc.) of RR
schedulers. Despite their extreme simplicity and effi-
ciency, one disadvantage of this family of schedulers is
that, irrespective of the weight φk of any flow k, both
the flow packet delay and the T-WFIk have an O(NL)
component, where L is the maximum packet size and
N is the total number of flows in the system.

To achieve a lower WFI than what is possible with
RR schedulers, other scheduler families try to stay as
close as possible to the service provided by an internally-
tracked ideal system. We call them timestamp based
schedulers as they typically timestamp packets with
some kind of Virtual Time function, and try to serve
them in ascending timestamp order, which has Ω(log N)
cost. Using this approach, schedulers such as WF2Q [4]
and WF2Q+ [2] offer optimal lag/packet delay and
optimal WFI, i.e., the lowest possible lag/packet de-
lay and WFI for a non-preemptive system. Especially,
their lag/packet delay is O(L) whereas their WFI is
O(L(1 + 1/φk)). The L/φk component is unavoid-
able and due to the non-preemptiveness of the system.
This component can still grow to O(NL) for low-weight
flows, but high weight flows receive better treatment.

Exact timestamp based schedulers have O(log N)
time complexity. Several approximated variants have
been defined that use rounded timestamps instead of
exact ones to get rid of the burden of exact ordering
and run in O(1) time. Examples are GFQ [14], Simple
KPS (S-KPS, the most efficient variant of SI-WF2Q) [8],
and the QFQ algorithm described here.

The approximation has an implication, proved in [17]:
differently from an optimal one (as WF2Q or WF2Q+),
any scheduler based on approximated timestamps has a
packet delay with respect to an ideal GPS server larger
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than O(L). However, GFQ, S-KPS and QFQ guarantee
the same T-WFI=O(L(1+1/φk)) as the optimal sched-
ulers. The difference is only in the multiplying constant,
which is 1 with exact timestamps and slightly larger
otherwise (e.g., 3 in the case of QFQ—see Sec.5.2).
Thus, approximated timestamps still give much better
guarantees than RR schedulers.

Approximated timestamp-based schedulers typically
use data structures that are more complex to ma-
nipulate than those used in RR or exact timestamp-
based schedulers. As a consequence, the same or bet-
ter asymptotic complexity does not necessarily reflect
in faster execution times. As an example, the ap-
proximated variants of WF2Q+ presented in GFQ [14]
use timestamp rounding, flow grouping and a calendar
queue to maintain a partial ordering among flows within
the same group. Each scheduling decision requires a
linear scan of the groups in the system to determine
the candidate for the next transmission. The actual
algorithms are only outlined, and no public implemen-
tation is available; the authors claim a sustainable rate
of 1 Mpps and a per-packet overhead of 500 ns for their
hardware implementations.

LFVC [16] rounds timestamps to integer multiples of
a fixed constant. Reducing the timestamps to a finite
universe enables LFVC to use data structures like van
Emde Boas priority queues, which have O(log log N)
complexity for all the basic operations they support.
This is not O(1) but grows very slowly with N , though
the van Emde Boas priority queues have high constants
hidden in the O() notation. A drawback of LFVC is
that its worst case complexity is O(N), because the al-
gorithm maintains separate queues for eligible and inel-
igible flows, and individual events may require to move
most/all flows from one queue to the other.

Finally, S-KPS is based on a special data structure
called Interleaved Stratified Timer Wheels (ISTW).
ISTW containers have several nice properties that al-
low S-KPS to execute packet enqueue and dequeue op-
erations at a worst-case cost independent of even the
number of groups, provided that a number of groups
proportional to the maximum packet size (in the worst-
case) is moved between two containers during the ser-
vice of each packet. In a system where the latter task
can be performed, and completed, during the transmis-
sion of a packet, S-KPS runs at a low O(1) amortized
cost per packet transmission time.

3. SYSTEM MODEL AND COMMON DEF-
INITIONS

In this section we give some definitions commonly
used in the scheduling literature, and also present the
exact WF2Q+ algorithm, which is used as a reference
to describe QFQ. For convenience, all symbols used in
the paper are listed in Table 1. Most quantities are a

function of time, but we omit the time argument (t)
when not ambiguous and clear from the context.

Symbol Meaning

N Total number of flows
L Maximum length of any packet in the

system
B(t) The set of backlogged flows at time t
W (t1, t2) Total service delivered by the system

in [t1, t2]
k Flow index
Lk Maximum length of packets in flow k
φk Weight of flow k

lk Length of the head packet in flow k;
lk = 0 when the flow is idle

Qk(t) Backlog of flow k at time t

W k(t1, t2) Service received by flow k in [t1, t2]

V (t) System virtual time, see Eq. (3)
Sk, F k Virtual start and finish times of flow k,

see Eq. (2)

Ŝk, F̂ k Approximated Sk and F k for flow k,
see Section 4.1.2

i, j Group index (groups are defined in
Sec.4.1.1)

Si, Fi Virtual start and finish times of group
i, see Eq. (6)

σi Slot size of group i (defined in
Sec.4.1.1, σi = 2i)

ER, EB,
IR, IB

The four sets in which groups are par-
titioned

Table 1: Definition of the symbols used in this
paper.

We consider a system in which N packet flows (de-
fined in whatever meaningful way) share a common
transmission link serving one packet at a time. The
link has a time-varying rate, which the system can de-
cide to use, partially or completely, to transmit packets
waiting for service. A system is called work conserving
if the link is used at full capacity whenever there are
packets queued. A scheduler sits between the flows and
the link: arriving packets are immediately enqueued,
and the next packet to serve is chosen and dequeued by
the scheduler when the link is ready. The interface of
the scheduler to the rest of the system is made of one
packet enqueue() and one packet dequeue() function.

In our model, each flow k is assigned a fixed weight
φk > 0. Without losing generality, we assume that
∑N

k=1 φk ≤ 1.
A flow is defined backlogged if it owns packets not yet

completely transmitted, otherwise we say that the flow
is idle. We denote as B(t) the set of flows backlogged at
time t. Inside the system each flow has a FIFO queue
associated with it, holding the flow’s own backlog.
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We call head packet of a flow the packet at the head
of the queue, and lk its length; lk = 0 when a flow
is idle. We say that a flow is receiving service if one
of its packets is being transmitted. Both the amount
of service W k(t1, t2) received by a flow and the total
amount of service W (t1, t2) delivered by the system in
the time interval [t1, t2] are measured in number of bits
transmitted during the interval.

3.1 WF2Q+
Here we outline the original WF2Q+ algorithm for a

variable-rate system. See [2,15] for a complete descrip-
tion. WF2Q+ is a packet scheduler that approximates,
on a packet-by-packet basis, the service provided by a
work-conserving ideal fluid system which delivers the
following, almost perfect bandwidth distribution over
any time interval:

W k(t1, t2) ≥ φkW (t1, t2)− (1 − φk)L. (1)

The packet and the fluid system serve the same flows
and deliver the same total amount of work W (t) (sys-
tems with these features are called corresponding in the
literature). They differ in that the fluid system may
serve multiple packets in parallel, whereas the packet
system has to serve one packet at a time, and is non pre-
emptive. Because of these constraints, the allocation of
work to the individual flows may differ in the two sys-
tems. WF2Q+ has optimal B-/T-WFI and O(log N)
complexity, which makes it of practical interest.

WF2Q+ operates as follows. Each time the link is
ready, the scheduler starts to serve, among the pack-
ets that have already started in the ideal fluid system,
the next one that would be completed (ties are arbi-
trarily broken). WF2Q+ is a work-conserving on-line
algorithm, hence it succeeds in finishing packets in the
same order as the ideal fluid system, except when the
next packet to serve arrives after that one or more out-
of-order packets have already started.

The WF2Q+ policy is efficiently implemented by con-
sidering, for each flow, a special flow virtual time func-
tion V k(t) that grows as the normalized amount of ser-
vice (i.e. actual service divided by the flow’s weight)
received by the flow when it is backlogged. The al-
gorithm only needs to know the values of V k(t) when
the flow becomes backlogged, or when its head packet
completes transmission in the ideal fluid system. So,
each flow k is timestamped with these two values,
called virtual start and finish time, Sk and F k, of the
flow. Using an additional system virtual time function
V (t), at time tp when a packet enqueue/dequeue occurs,
WF2Q+computes these timestamps as follows:

Sk ←

{

max(V (tp), F k) on newly backlogged flow
F k on pkt dequeue

F k ← Sk + lk/φk,
(2)

where V (t) is the system virtual time function defined
as follows (assuming

∑

φk ≤ 1):

V (t2) ≡ max

(

V (t1) + W (t1, t2), min
k∈B(t2)

Sk

)

. (3)

At system start-up V (0) = 0, Sk ← 0 and F k ← 0.
Flow k is said to be eligible at time t if V (t) ≥ Sk.

This inequality guarantees that the head packet of the
flow has already started to be served in the ideal fluid
system. Using this definition, WF2Q+ can be imple-
mented as follows: each time the link is ready, the
scheduler selects for transmission the head packet of
the eligible flow with the smallest virtual finish time.
Note that the second argument of the max function in
Eq. (3) guarantees that the system is work-conserving.

The implementation complexity in WF2Q+ comes
from three tasks: i) the computation of V (t) from
Eq. (3), which requires to keep track of the minimum
Sk, and has O(log N) cost; ii) the selection of the next
flow to serve among the eligible ones, which requires
sorting on F k, and also has O(log N) cost at each step;
iii) the management of eligible flows as V (t) grows. This
is made complex by the fact that any change in V (t) can
render O(N) flows eligible. With some cleverness [7], an
augmented balanced tree can be used to perform the
latter two tasks together in O(log N) time.

4. QUICK FAIR QUEUEING
We start by giving the intuition of the algorithm and

of its underlying data structures, represented in Fig. 1.
As other timestamp-based schedulers, QFQ associates
to each flow (a yellow square in the figure) both exact
and approximated virtual times. Flows are statically
mapped into a finite number of groups (the grey regions
in the figure). Within each group, a bucket sort algo-
rithm is used to keep flows ordered according to their
(approximate) virtual times. Structural properties of
the algorithm guarantee that each group only needs a
finite and small number of buckets, so both sorting and
min-extraction within a group can be done in constant
time with a handful of machine instructions. Depend-
ing on certain properties of its virtual times, each non-
empty group belongs to one of four sets called ER, EB,
IR and IB.

The management of eligibility (essential for service
guarantees) and inter-group sorting is done by splitting
groups between four distinct sets, called ER, EB, IR
and IB. These are built so that i) groups in ER only
contain eligible flows, ii) in ER, the group number re-
flects the ordering of the (approximated) virtual times
of the flows in the group, and iii) within each group the
bucket number reflects the order of virtual times of the
flows in the group.

As a result, an enqueue() operation can directly ac-
cess the group, use the virtual time as a bucket index,

4



Figure 1: QFQ at a glance. The figure represents
all main data structures used by the algorithm:
the four groups sets on the top; the groups (rect-
angles on the bottom) containing the bucket lists
and individual flow queues.

and do a simple append to add the flow to the bucket’s
queue. Some trivial bitmap operations are then suffi-
cient to adjust set membership.

On a dequeue(), the selection of the eligible flow with
the smallest virtual finish time requires only a couple
of Find First Set (ffs) CPU instructions to locate the
candidate, once again followed by a modest amount of
work to readjust set membership.

4.1 Detailed Description
QFQ approximates WF2Q+, providing near-optimal

service guarantees (see Section 5) but reducing the im-
plementation complexity to O(1) with small constants
thanks to three main techniques described below.

4.1.1 Flow Grouping

QFQ groups flows into a small constant number of
groups on which to do the scheduling. A flow k is as-
signed to a group i defined as

i =

⌈

log2

Lk

φk

⌉

, (4)

where Lk is the maximum size of the packets for flow k.
For any practical set of Lk’s and φk’s in a system, the
number of distinct groups is less than 64 (in fact, 32
groups suffice in many cases)2 and lets us represent a
set of groups with a bitmap that fits in a single machine
word.

The quantity σi ≡ 2i (bits) is called the slot size of

2This is trivially proven by substituting values in (4); as an

example, Lk between 64 bytes and 16 Kbytes, φk between 1
and 10

−6) yield values between 64 = 2
6 and 16 · 10

9
≈ 2

34,
or 29 groups.

the group. It is easy to see that Lk/φk < σi, hence from
Eq. (2), F k − Sk ≤ σi for any flow k in group i.

4.1.2 Timestamp Rounding

QFQ computes Sk and F k for each flow using the ex-
act algorithm in Eq. (2), but for eligibility or scheduling
computations it uses the approximate values3:

Ŝk ←
⌊

Sk

σi

⌋

σi , F̂ k ← Ŝk + 2σi, (5)

where i is the group index.
Within each group we define

Si = min
k∈groupi

Ŝk , Fi = Si + 2σi, (6)

which are called the group’s virtual start and finish
times. Finally, in Eq. (3), QFQ replaces mink∈B(t) Sk

with mink∈B(t) Ŝk.

Same as for the exact values, Ŝk and F̂ k can assume
a limited range of values around V (t) (this is called
Globally Bounded Timestamp property, or GBT). We
can prove Theorems 3 and 4 that at any time instant
Ŝk < V (t)+σi, and the range of values for Ŝk is limited
to 2 + ⌈L/σi⌉ times σi. This implies that at any time

instant the possible values for Ŝk are in small and finite
number. Hence, we can sort flows within a group using
a constant-time bucket sort algorithm. The use of Ŝk

in Eq. (3) also saves another sorting step, because, as
we will see, the group sets defined in the next section
let us compute it in constant time.

Figure 2: A representation of bucket lists. The
number of buckets (grey, each corresponding to
a possible value of Ŝk), is fixed and independent
of the number of flows in the group.

The data structure used to sort flows within a group
is a bucket list—a short array with as many buckets
as the number of distinct values for Ŝk (see Fig. 2).
Each bucket contains a FIFO list of all the flows with
the same Ŝk and F̂ k. The number of buckets depends
on the ratio L/σi which is at most max(L/Lk). For

3There is only one case where the Sk for certain newly back-
logged groups can be shifted backwards to preserve the or-
dering of EB; this exception is described and its correctness
is proved in Lemma 4.
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Gb remains ready

Gb becomes blocked

V(t)

Group index

Ga

Gb

Fa

Figure 3: Transitions from/to the blocked state.
See Section 4.1.3.

practical purposes, 64 buckets are largely sufficient, so
we can map each bucket to a bit in a machine word;
this allows us to use a constant-time Find First bit Set
(FFS) instruction to locate the first non-empty bucket
in order to find the next flow to serve.

4.1.3 Group Sets and Their Properties

QFQ partitions backlogged groups into four distinct
sets, which reduces scheduling and bookkeeping oper-
ations to simple set manipulations, in turn performed
with basic CPU instructions such as AND, OR and FFS
on single machine words.

The sets are called ER,EB, IR, and IB (from the
combinations of the initials of Eligible, Ineligible, Ready,
and Blocked), and the partitioning is done using two
properties:

• Eligibile: group i is said Eligible at time t iff
Si ≤ V (t), and Ineligible otherwise.

• Blocked: independent of its own eligibility, a
group i is said to be Blocked if there is some eligi-
ble group with higher index and lower finish time.
Otherwise the group is said to be Ready.

Fig. 3 illustrates the meaning of “Blocked”. The rect-
angle on the top represents the first full slot of group
Ga the smaller rectangles on the bottom represent some
of the positions that a group Gb with an index b < a
can assume. If only these two groups are backlogged in
the system, Gb remains Ready until its finish time Fa

is smaller than that of Ga. Flows in Gb will be selected
for service (as long as they are eligibile), and the finish
time of the group increases as its flows gets serviced.
Once Fb > Fa then Gb becomes Blocked.

Introducing the blocked state gives groups in the ER
the nice property that the group index reflects the or-
dering by finish time: (∀j, i ∈ ER, j > i =⇒ Fj > Fi)
which means that the next packet to serve is the head
packet of the first flow of the first group in ER.

Individually, a group can enter any of the four sets
when it becomes backlogged or after it is served. Moves
of multiple groups from one set to the other can occur
only on the paths

IB→ IR , IR→ ER , IB→ EB , EB→ ER

because transitions in eligibility (driven by changes in
V (t)), and readiness (driven by changes in the Fi of
the blocking group) are not reversible until the group is
served.

Moving multiple groups from one set to another can
be done with basic CPU instructions (AND, OR, NOT)
without iterating over the sets, because, first, the finish
time ordering of ER actually holds for all the four sets,
and second IB ∪ IR is sorted by both Si and Fi. All
the properties and their proofs are summarized below:

1. IB ∪ IR is sorted by Si as a result of the GBT
property. In fact, if a group i is ineligible, any flow
k in the group has V (t) < Sk < V (t) + σi. Due to
the rounding we can only have Si = ⌈V (t)/σi⌉σi,
and if i < j, we have 2σi ≤ σj hence Si ≤ Sj ;

2. IB∪ IR is also sorted by Fi because of the sorting
by Si and the fact that σi’s are increasing with i;

3. the sorting of ER by Fi is proven in Theorem 6;

4. the sorting of EB by Fi is proven in Theorem 7;

By definition, if i ∈ EB, then at least one group
j ∈ ER has Fj ≤ Fi. Because ER is sorted by Fi,
the readiness test for group i needs only to look at the
lowest-order group in ER with an index x > i. Function
compute_group_state() in Fig. 4 does the computation
of set membership for a group.

4.2 Quick Fair Queueing: The Algorithm
We are now ready to describe the full algorithm for

enqueue() and dequeue(), which are run respectively on
packet arrivals, and when the link becomes idle.

4.2.1 Packet Enqueue

The full enqueue algorithm is shown in Fig. 4. First,
the packet is appended to the flow’s queue, and nothing
else needs to be done if the flow is already backlogged.
Next, we update the flow’s timestamps (lines 8–9). In
line 11 we check whether the group’s state needs to be
updated: this happens if the group was not backlogged
(g.bucketlist.head == NULL), or if the new flow causes
the group’s timestamp to decrease. In this respect, from
line 8 it follows that V (t) ≤ Sk. As a consequence, if
Sk < Si holds at line 11, then V (t) < Si holds too.
Hence the group was either idle or ineligible if we enter
the block at lines 12-19, and we remove the group from
the ineligible sets (lines 15–16), and update the group’s
timestamps (being the slot size 2i, the start time calcu-
lation only needs to clear the last i bits of Sk, line 17).
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1 // Enqueue the input pkt of the input flow
2 enqueue( in : pkt , in : f l ow )
3 {
4 append ( pkt , f l ow . queue ) ; // always enqueue
5 i f ( f l ow . queue . head != pkt )
6 return ; // Flow already backlogged, we are done.
7 // Update flow timestamps according to Eq. (2)
8 f l ow . S = max( f low .F , V) ;
9 f l ow .F = f low . S + pkt . l ength / f low . weight ;

10 g = f low . group ; // g is our group
11 i f ( g . b u c k e t l i s t . head==NULL | | f l ow . S<g . S) {
12 // Group g is surely idle or not eligible.
13 // Remove from IR and IB if there, and compute
14 // new timestamps from Eq. (5).
15 s e t [ IR ] &= ~(1 < < g . index ) ;
16 s e t [ IB ] &= ~(1 < < g . index ) ;
17 g . S = f low . S & ~(g . s l o t_ s i z e − 1) ;
18 g .F = g . S + 2∗g . s l o t_s i z e ;
19 }
20 bucket_inse r t ( f low , g ) ;
21

22 // If there is some backlogged group, at least one is
23 // in ER; otherwise, make sure V ≥ g.S
24 i f ( s e t [ER] == 0 && V < g . S)
25 V = g . S ;
26

27 // compute new state for g, and insert in the proper set
28 s t a t e = compute_group_state ( g ) ;
29 s e t [ s t a t e ] |= 1 < < g . index ;
30 }
31

32 // Compute the group’s state, see Section 4.1.3
33 compute_group_state ( in : g ) : int

34 {
35 // First, eligibility test
36 s = ( g . S <= V) ? ELIGIBLE : INELIGIBLE;
37 // Find lowest order group x > group.index.
38 // This is the group that might block us.
39 // ffs_from(d, i) returns the index of the first
40 // bit set in d after position i
41 x = ffs_from ( se t [ER] , g . index ) ;
42 s += (x != NO_GROUP && groups [ x ] . F < g .F) ?
43 BLOCKED : READY;
44 return s ;
45 }

Figure 4: The enqueue() function, called on
packet arrivals, and compute_group_state()
that implements the tests for eligibility and
readiness.

Following that, we use a constant time bucket sort (line
20) to order the flow with respect to other flows in the
group. At this point we may need to update V (t) as
in Eq. (2). Finally (lines 28–29), we update the state
of the group (which may have changed due to the new
values of Si, Fi and V (t)), and put the group in its new
set. The computation of the new state of the group is
done in function compute_group_state().

It is important to note that an enqueue involves no
movement of other groups across sets. There cannot
be eligibility changes, because V (t) changes only if all
other groups are idle. The blocked/ready states cannot
change if the flow was already backlogged, because its
group does not change its finish time.

Finally, if the group j containing this flow just be-
came backlogged, or its finish time decreased, we have
Sk ≥ V (t), hence Fj > ⌊V (t)/σj⌋σj + 2σj . Any Ready
group i < j will have Fi < ⌊V (t)/σi⌋σi + 3σi (one

σi comes from the upper bound on Sk, the other two
come from the definition of Fi = Si + 2σi). Hence
Fi ≤ V (t) + 3σi. By definition j > i =⇒ σj ≥ 2σi,
so Fj ≥ Fi and the newly backlogged group j cannot
block a previously Ready group, even in the worst case
(largest possible Fi, smallest possible Fj).

4.2.2 Packet Dequeue

1 dequeue ( ) : packet // Return the next packet to serve
2 {
3 i f ( s e t [ER] == 0)
4 return NULL;
5 // Dequeue the first packet of the first flow of the group
6 // in ER with the smallest index
7 g = groups [ f f s ( s e t [ER] ) ] ;
8 f l ow = bucket_head_remove( g . b u c k e t l i s t ) ;
9 pkt = head_remove( f low . queue ) ;

10

11 // Update flow timestamps according to Eq. (2)
12 f l ow . S = f low .F ;
13 p = f low . queue . head ; // next packet in the queue
14 i f (p != NULL) {
15 f l ow .F = f low . S + p . l ength / f low . weight ;
16 bucket_inse r t ( f low , g ) ;
17 }
18

19 old_V = V; // Need the old value in make_eligible()
20 V += pkt . l ength ; // Account for packet just served
21

22 old_F = g .F ; // Save for later use
23 i f ( g . b u c k e t l i s t . headf low == NULL) {
24 s t a t e = IDLE ; // F not significant now
25 } else {
26 g . S = g . bu c k e t l i s t . headf low . S ;
27 g .F = g . bu c k e t l i s t . headf low .F ;
28 s t a t e = compute_group_state ( g ) ;
29 }
30

31 // If g becomes IDLE, or if F has grown, may need to
32 // unblock other groups and move g to its new set
33 i f ( s t a t e == IDLE | | g .F > old_F) {
34 s e t [ER] &= ~(1 < < g . index ) ;
35 s e t [ s t a t e ] |= 1 < < g . index ;
36 unblock_groups( g . index , old_F) ;
37 }
38

39 x = se t [ IR ] | s e t [ IB ] ; // all ineligible groups
40 i f (x != 0) { // Someone is ineligible, may need to
41 // bump V up according to Eq. (3)
42 i f ( s e t [ER] == 0)
43 V = max(V, groups [ f f s ( x ) ] . S ) ;
44 // Move newly eligible groups from IR/IB to ER/EB
45 make_e l ig ib l e (old_V , V) ;
46 }
47 return pkt ;
48 }

Figure 5: The dequeue() function, described in
Section 4.2.2.

Function dequeue() in Fig. 5 is called whenever the
link is idle and we have packets to transmit. The func-
tion returns the next packet to transmit, and updates
data structures as needed.

The packet selection (lines 3–9) is straightforward. If
there are queued flows, at least one flow is eligible, so
ER is not empty, and we just need to pick the group
with the lowest index in ER, and from that the first
packet from the first flow. Following that, the flow’s
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timestamps are updated, and the flow is possibly rein-
serted in the bucket list (lines 11–17).

Virtual time is increased in line 20, to reflect the
service of the packet selected for transmission. Next
(lines 22–29), the group’s timestamps and state are up-
dated. If the group has increased its finish time or it
has become idle (lines 33–37), we may need to unblock
some other groups, using function unblock_groups() de-
scribed in Sec. 4.2.3.

Finally, lines 39–46 make sure that at least one back-
logged group is eligible by bumping up V if neces-
sary, and moving groups between sets using function
make_eligible() which will be discussed next.

4.2.3 Support Functions

We are left with a small set of functions to document,
shown in Fig. 6, and mostly used in the dequeue() code.

Function move_groups() is trivial and just moves
from set src to set dest those groups whose indexes are
included in mask. Simple bit operations do the job.

Function make_eligible() determines which groups
become eligible as V (t) grows after serving a flow. Here
again we exploit the features of timestamp rounding to
make the operation simple. Fig. 7 gives a graphical rep-
resentation of the possible values of Si’s and V (t), and
the binary representations of V (t) (the vertical strings
of binary digits). Since slot sizes are powers of two, the
binary representation of the i-th group’s slot size (and
thus of all its virtual time slots, as they are aligned to
the slot size) ends with i zeros; in any given slot be-
longing to group i, the value of the i-th bit is constant
during the whole slot. Each time the i-th bit of V (t)
flips, the virtual time enters a new slot of size 2i. Since
slots are aligned, we only need to determine the highest
bit j that changed on each V (t) update to find all the
ineligible groups with i ≤ j have become eligible.

Function make_eligible() computes the index j, using
an XOR followed by a Find Last Set (fls) operation;
then computes the binary mask of all indexes i ≤ j,
and calls function move_groups to move groups whose
index is in the mask from IR to ER and from IB to
EB.

Function unblock_groups() updates the set of blocked
groups. If the finish time Fi of the group under ser-
vice increases it may be possible that some groups it
was blocking become ready (in other words, moving the
blocked groups into the ready state would no more vio-
late the ordering of ER∪IR, because the violation was
caused by the finish times of the blocked groups being
lesser than Fi). Anyway, if there still are groups in ER,
the first one of them must have a finish time greater
than the last one just served, otherwise the blocked
groups would remain blocked by the new head group. If
there are no more groups in ER, or if the smallest Fi in
ER is greater than the one last served, then Theorem 8

proves that all the groups with an index smaller than
the groups last served become ready again.

1 // Move the groups in mask from the src to the dst set
2 move_groups( in : mask , in : src , in : de st )
3 {
4 s e t [ de st ] |= ( se t [ s r c ] & mask ) ;
5 s e t [ s r c ] &= ~( se t [ s r c ] & mask) ;
6 }
7

8 // Move from IR/IB to ER/EB all groups that become
9 // eligible as V (t) grows from V1 to V2.

10 // This uses the logic described in Fig. 7
11 make_e l ig ib l e ( in : V1 , in : V2)
12 {
13 // compute the highest bit changed in V(t) using XOR
14 i = f l s (V1 ^ V2) ;
15 // mask contains all groups with index j ≤ i

16 mask = (1 < < ( i +1) ) − 1 ;
17 move_groups(mask , IR , ER) ;
18 move_groups(mask , IB , EB) ;
19 }
20

21 // Unblock groups after serving group i with F=old_F
22 unblock_groups( in : i , in : old_F)
23 {
24 x = f f s ( s e t [ER] ) ] ;
25 i f (x == NO_GROUP | | groups [ x ] . F > old_F) {
26 // Unblock all the lower order groups (Theorem 8)
27 // mask contains all groups with index j < i

28 mask = (1 < < i ) − 1 ;
29 move_groups(mask , EB, ER) ;
30 move_groups(mask , IB , IR ) ;
31 }
32 }

Figure 6: Support functions to recompute the
set of eligible groups after a flow has been
served. These are described in Sec. 4.2.2

.

4.3 Time and Space Complexity
From the listings it is clear that QFQ has O(1) time

complexity on packet arrivals and departures: all oper-
ations, including insertion in the bucket list and find-
ing the minimum timestamps, require constant time.
All arithmetic operations can be done using fixed point
computations, including the division by the flow weight.
Detailed performance measurements will be given in
Section 7.

In terms of space, the per-flow overhead is approx-
imately 24 bytes (two timestamps, weight, group in-
dex and one pointer). Each group contains a variable
number of buckets (32 in the worst case, requiring one
pointer each), plus two timestamps and a bitmap. Fi-
nally, the main data structure contains five bitmaps, the
sum of weights and a timestamp. Overall, even a large
configuration will require 4 Kbytes of memory to hold
the entire state of the scheduler.

An important property is that on each enqueue() or
dequeue() request, the algorithm only touches the in-
ternal memory (the 4 KB mentioned above) and the
descriptor of the single flow involved in the operation.
As a consequence, QFQ it is influenced very little by
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Figure 7: Tracking group eligibility. The pic-
ture represents the transition of V from old_V
to new_V; the highest bit that flips across the
transition is the second one, so groups zero and
one are the candidates to become eligible. See
Section 4.2.3 for further details.

contention on the external memory bus.

5. SERVICE PROPERTIES
Service guarantees are an important parameter of

any scheduling algorithm, so we provide here analytical
bounds for the B-WFI (bit guarantees) and the T-WFI
(time guarantees) of QFQ. Most of the proofs for the
theorems used here are reported in the full version of
the paper [5].

5.1 Bit Guarantees
The B-WFIk guaranteed by a scheduler to a flow k is

defined as:

B-WFIk ≡ max
[t1,t2]

φkW (t1, t2)−W k(t1, t2), (7)

where [t1, t2] is any time interval during which the flow
is continuously backlogged, φkW (t1, t2) is the minimum
amount of service the flow should have received accord-
ing to its share of the link bandwidth and W k(t1, t2)
is the actual amount of service provided by the sched-
uler to the flow. This definition is indeed slightly more
general than the original one, where t2 is constrained to
the completion time of a packet.

Theorem 1. B-WFI for QFQ For a flow k belong-
ing to group i QFQ guarantees

B-WFIk = 3φkσi + 2φkL. (8)

Proof. In this proof we express timestamps (V (t),
F k(t), etc.) as functions of time to avoid ambiguities.
We consider two cases. The first one is when flow k is
eligible at time t1. In this case, the virtual time V k(t)
of flow k in the real system must be V k(t1) ≤ F k(t1),
and V k(t2) ≥ Sk(t2). In addition, ∀t, V (t) ≤ Fi(t) + L
as proven in Theorem 4, then Si(t2) = Fi(t2) − 2σi >

V (t2)− L− 2σi. Hence we have:

W k(t1, t2) =
φkV k(t1, t2) =

φk(Sk(t2)− V k(t1)) ≥
φk(Sk(t2)− F k(t1)) ≥
φk(Si(t2)− F k(t1)) >

φk(Si(t2)− (Sk(t1) + σi)) >
φk(V (t2)− L− 2σi − (V (t1) + σi)) =

φk(V (t2)− V (t1)− L− 3σi) =
φk(V (t2)− V (t1))− φkL− 3φkσi >

φkW (t1, t2)− 2φkL− 3φkσi,

(9)

where the last inequality follows from the fact that, be-
cause of the immediate increment of V (t) as a packet is
dequeued (see updateV()), V (t2)− V (t1) ≥W (t1, t2)−
L.

The other case is when flow k is not eligible at time
t1. This implies that V k(t1) is exactly equal to Sk(t1).
Hence, considering that Sk(t1) ≤ V (t1) + σi, we have:

W k(t1, t2) ≥
φk(Sk(t2)− Sk(t1)) ≥
φk(Si(t2)− Sk(t1)) >

φk(V (t2)− L− 2σi − Sk(t1)) >
φk(V (t2)− L− 2σi − (V (t1) + σi) >

φk(V (t2)− V (t1)− L− 3σi) >
φkW (t1, t2)− 2φkL− 3φkσi.

(10)

As a term of comparison, in a perfectly fair ideal fluid
system such as the GPS server, B-WFIk = 0 (see [2]),
whereas repeating the same passages of the proof in case
of exact timestamps (i.e. exact WF2Q+ with stepwise
V (t)), the resulting B-WFIk would be (Lk + 2φk)L.

The B-WFIs for SI-WFQ and GFQ have not been
computed by their authors. However both these algo-
rithms and QFQ implement the same policy (WF2Q+),
differing only in how they approximate the timestamps.
Generalizing the previous proof, and expressing again
the timestamps as a function of time, it is possible to
show that the B-WFI of a scheduler of this kind is the
sum of two components, equal to maxt[S

k(t)−V (t)] and
maxt[V (t) − F k(t)], respectively. The first component

is upper-bounded by maxt[S
k(t)− Ŝk(t)] (from Eq. 5);

and, Lemma 3 in [8] proves that the second component

is upper-bounded by L + maxt(F̂
k − F k(t)).

In QFQ, the two bounds are σi and L + 2σi, respec-
tively. In S-KPS, these bounds are 4σi and L + 2σi, so
the B-WFI of S-KPS larger than that of QFQ by 3σi.
Finally, in GFQ, setting the slot sizes as powers of two
yields the bounds σi and L + σi, and hence a B-WFI
lower than that of QFQ by σi.

5.2 Time Guarantees
Expressing the service guarantees in terms of time is

only possible if the link rate is known. The T-WFIk
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guaranteed by a scheduler to a flow k on a link with
constant rate R is defined as:

T-WFIk ≡ max

(

tc − ta −
Qk(t+a )

φkR

)

, (11)

In S-KPS, these bounds are 4σi and L + 2σi, so the B-
WFI of S-KPS larger than that of QFQ by 3σi. Finally,
in GFQ, setting the slot sizes as powers of two yields the
bounds σi and L + σi, and hence a B-WFI lower than
that of QFQ by σi. where ta and tc are, respectively, the
arrival and completion time of a packet, and Qk(t+a ) is
the backlog of flow k just after the arrival of the packet.

Theorem 2. T-WFI for QFQ For a flow k belong-
ing to group i QFQ guarantees

T-WFIk = (3σi + 2L)
1

R
. (12)

For the proof see Theorem 10; the proof is conceptually
similar to the one of the B-WFI.

For comparison, a perfectly fair ideal fluid system
would have T-WFIk = 0, whereas for WF2Q+, which
uses exact timestamps, repeating the same passages of

the proof yields T-WFIk = (Lk

φk +2L)/R. Finally, using
the same arguments as for the B-WFI, the T-WFI of
S-KPS is higher than that of QFQ by 3σi/R, and the
T-WFI of GFQ is lower than that of QFQ by σi/R.

6. SIMULATIONS
To prove the effectiveness of the service properties

guaranteed by QFQ we implemented it in the ns2 sim-
ulator [1] and we compared it to DRR, S-KPS and
WF2Q+. We chose DRR to represent the class of pure
round robin schedulers, KPS as an example of high-
efficiency timestamp-based scheduler, and WF2Q+ as
a reference point for its optimal service properties.

The network topology used in the simulations is in-
spired to the one used in [6], and is depicted in Fig. 8.
The links between R0 and R1 and R1 and R2 have 10
Mbit/s bandwidth and 10 ms propagation delay, all the
other links have 100 MBit/s and 1 ms. The observed
flows are f0, a CBR with rate 32 Kbit/s going from S0 to
K0, and f1, a CBR with rate 512 Kbit/s going from S1

to K1. In the network are also active a CBR flow with
rate 512 Kbit/s from S1 to K1 (same configuration as
f1, and 50 CBR flows with rate 160 Kbit/s going from
S2 to K2, and two best effort flows, one from S3 to K3

and one from S4 to K4, each generated from its own
Pareto source with mean on and off times of 100 ms,
α = 1.5, and mean rate of 2 MBit/s (larger than the
unallocated bandwidth of the links between the routers,
in order to saturate their queues).

Table 2 shows the average end-to-end delays experi-
enced by f0 and f1 during the last 15 seconds of sim-
ulation (the total simulation time was 20 s, the first

S0

S1

S2

S3 S4

K0

K1

K2

K3 K4

R0 R1 R2

Figure 8: Simulated scenario. Individual flows
f0 and f1 are originated by nodes S0 and S1,
whereas S2 generates 50 CBR flows to pertur-
bate the traffic. The routers all run the same
scheduling algorithm.

f0 f1

DRR 134.87± 34.28 126.32± 30.64
QFQ 43.16± 5.60 22.76± 0.61
S-KPS 46.28± 5.42 22.59± 0.60
WF2QP 34.39± 0.35 22.59± 0.61

Table 2: Simulation results. End-to-end average
delays/stddev in ms.

five where not considered to let the values settle). Ta-
ble 3 shows the maximum delays observed during the
experiment. As it can be seen, QFQ performs as ex-
pected, with delays similar to the ones measured for
S-KPS, given the common nature that the two sched-
ulers share. DRR is showing delays which are an order
of magnitude higher than the other schedulers.

We can also observe that, as expected, both S-
KPS and QFQ are able to provide less deviation from
WF2Q+ for flows with higher rate, because the times-
tamp approximation is less precise as the flow’s rate de-
creases. Both the average and the maximum delays for
f0, which is a low-rate flow (the lowest rate in the sys-
tem), are substantially greater than with WF2Q+, and
the standard deviation indicates a slightly more pro-
nounced jitter in the service. On the other hand, the

f0 f1

DRR 216.99 206.40
QFQ 47.56 23.33
S-KPS 59.91 23.34
WF2Q+ 35.2 23.33

Table 3: Simulation results. Maximum end-to-
end delays in ms.
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highest priority flow, f1 does not suffer from the same,
and in these simulations it receives the same treatment
it receives in WF2Q+.

7. EXPERIMENTAL RESULTS
Together with the good service guarantees, the most

interesting feature of QFQ is the constant (independent
of the number of flows) and small per-packet execution
time, which makes the algorithm extremely practical.
To study the actual performance of our algorithm, and
compare it with other alternatives, we have built C ver-
sions of QFQ and various other schedulers, including
S-KPS. Our code is directly usable as a kernel mod-
ule in the scheduling frameworks in Linux (“tc”) and
FreeBSD (“dummynet”), and includes all necessary (and
potentially time-consuming) operations such as param-
eter checking and accounting.

Figure 9: Our testing environment: a controller
drives the scheduler module with programmable
sequences of requests.

We have performed a thorough performance analy-
sis by running the scheduler code in a test environ-
ment where we could precisely control the sequence of
enqueue/dequeue requests presented to the schedulers
(Fig. 9). The controller lets us decide the number and
distribution of flow weights and packet sizes, as well as
keep track of the number of backlogged flows and the
total amount of traffic queued in the scheduler. These
parameters impact the behaviour of schedulers in dif-
ferent ways; especially, the memory usage and access
patterns are important on modern CPUs, where cached
and non-cached access times differ by one order of mag-
nitude or more.

7.1 Measurement details
Ideally we would like to take individual samples of the

duration of each enqueue() or dequeue() operation. Un-
fortunately some of these operations are extremely fast,
in the order of tens of nanoseconds and less: in fact,
enqueue()’s in many cases boil down to a simple list
append, and in many of the simplest schedulers (e.g.
FIFO or DRR) dequeue()’s are equally simple. The
measurements tools (TSC or CPU performance coun-
ters) available on modern CPUs are still not sufficiently
accurate for measuring such short intervals, because of
the effects of out-of-order instruction processing and
deep CPU pipelines.

On top of this, even having precise timing measure-
ment tools would not help much for performing worst

case analysis, as the execution time of such small pieces
of code as the ones we are trying to measure is heavily
affected by cache misses and memory contention.

To achieve more reliable results, we did not pursue
this granularity of measurements, and instead evalu-
ated the total execution time for experiments where the
controller generates a very large number (5 millions or
more) of enqueue() and dequeue() requests. By dividing
the total time the number of requests, we can estimate
the average cost of an enqueue()/dequeue() pair, inclu-
sive of the time spent by the controller for packet gener-
ation and disposal. To estimate the controller costs, for
each configuration we have run experiments with the
scheduler replaced by empty calls.

This approach does not allow us to separate the cost
of enqueue() and /dequeue() operations, but this is not
particularly important for the following reasons. First,
in the steady state, there is approximately the same
number of calls for the two functions. Only when a link
is severely overloaded the number of enqueue() will be
much larger than its counterpart, but in this case drop-
ping a packet is a very inexpensive operation. Second,
in most algorithms it is possible to move some opera-
tions between enqueue() and dequeue(), so it is really
the sum of the two costs that counts to judge the overall
performance of an algorithm.

Our tests include the following schedulers:

NONE This is actually the baseline case which we use
to measure the cost of packet generation and dis-
posal, including memory-touching operation that
may affect the behaviour of the cache in other ex-
periments. In this configuration, packets gener-
ated by the controller are just stored in a FIFO
queue from where they are extracted when the con-
troller would request a dequeue();

FIFO this is the simplest possible scheduler, consisting
in an unbounded FIFO queue. Compared to the
baseline case, here we exercise the scheduler’s API,
which causes one extra function calls and counter
updates on each request;

DRR this implements the Deficit Round Robin sched-
uler, where each flow has a configurable quantum;

QFQ the algorithm described in this paper. The code
follows very closely the description given here. We
use 19 groups, packet sizes up to 2KBytes, and
weights between 1 and 216;

S-KPS the scheduler described in [8]. The code
has been implemented from the paper with some
minor optimizations. Internal parameters (e.g.
lmin, lmax) have been set to values similar to those
used for QFQ;

WF2Q+ this is an implementation of the WF2Q+
algorithm taken from the FreeBSD’s dummynet
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code. It has O(log N) scaling properties, but it is
of some interest to determine the break-even point
between schedulers with different asymptotical be-
haviour.

In terms of traffic patterns, we ran extensive tests
with different combinations and number of flows (from
1 to 128K), with various weight and packet size distri-
butions. These configurations show how the schedulers
depend on the number of flow, traffic classes and also
their sensitivity to memory access times.

To emulate different load conditions for the link, we
generate requests for the scheduler with three patterns:
SMALL and LARGE generate bursts of 5N and 30N
packets, respectively (where N is the number of active
flows), and then completely drain the scheduler; FULL
keeps the scheduler constantly busy, with a total back-
log between 3N and 30N packets.

The bursty patterns try to reproduce operation on a
normally unloaded link, whereas the “full’ pattern mim-
ics the behaviour of a fully loaded link driven by TCP
or otherwise adaptive flows, which modify their offered
load depending on available bandwidth.
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Figure 10: Scaling properties of the various al-
gorithms. WF2Q+ grows as O(log N), reaching
2000 ns for 32k flows (see Table 4).

7.2 Results
Table 4 and Figure 10 report some of the most signif-

icant test results. These experiments have been run
on a low-end desktop machine (2.1GHz CPU, 32-bit
OS, 667MHz memory bandwidth), with code compiled
with gcc -O3. Experiments ran on different platforms
have produced results that scale mostly linearly with
the platform’s performance. The point where cache ef-
fects become visible, however, varies on each system
depending on available cache sizes.

Figure 10 shows clearly that all O(1) algorithms do
not depend on the number of flows, whereas WF2Q+

Measurement results in ns for an enqueue()/dequeue() pair and

packet generation. Standard deviations are within 3% of
the average, so we do not report them to reduce the clutter

in the table

1 flow

NONE FIFO DRR QFQ S-KPS WF2Q+

small 65 86 107 221 419 220

large 65 85 106 222 446 210

full 62 83 105 221 450 210

8 flows

NONE FIFO DRR QFQ S-KPS WF2Q+

small 62 80 102 168 458 356

large 60 82 104 162 530 350

full 60 80 102 163 543 344

64 flows

NONE FIFO DRR QFQ S-KPS WF2Q+

small 62 80 100 162 454 528

large 59 80 101 155 532 530

full 59 80 100 158 540 526

512 flows

NONE FIFO DRR QFQ S-KPS WF2Q+

small 62 82 111 170 468 732

large 65 84 110 172 550 730

full 64 85 110 175 560 740

4096 flows

NONE FIFO DRR QFQ S-KPS WF2Q+

small 72 100 150 212 507 1100

large 74 100 160 195 570 1090

full 74 102 157 197 590 1110

32768 flows

NONE FIFO DRR QFQ S-KPS WF2Q+

small 90 114 185 230 550 1900

large 103 126 158 234 603 1880

full 62 117 147 222 601 1690

1:32k,2:4k,4:2k,8:1k,128:16,1k:1 flows

NONE FIFO DRR QFQ S-KPS WF2Q+

small 91 120 167 247 598 1868

large 107 131 160 250 595 1734

full 92 119 160 255 612 1715

Table 4: A subset of experimental results.
On top, experiment with increasing number of
flows, all belonging to the same class. The last
group shows a mix of flows with exponentially
increasing weights, and exponentially decreasing
number of flows for each class.

shows the expected O(log N) behaviour. We see that
DRR and FIFO are really inexpensive, and most of the
time in the test is consumed by the packet generator
(the curve labeled NONE in the figure), which accounts
for approximately 60 ns per enqueue/dequeue pair. All
schedulers, and the generator itself, show a modest in-
crease of the execution time as the number of flows goes
(on this particular platform) above 4k. This is likely
due to the working set of the algorithm overflowing the
available cache, which causes cache misses that impact
on the total execution time. In absolute terms, QFQ
behaves really well, consuming about 100-110 ns (ex-
cluding the traffic generation) up to the point where
cache misses start to matter. S-KPS also has reason-
ably good performance, taking approximately 500 ns,
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although this is between 2.5 and 3 times the cost of
QFQ.

Finally, we would like to note that while WF2Q+
has obvious scalability issues, for configurations with a
small number of flows it can still be a viable alternative.

The final block of the table reports the result of exper-
iments with a large mix of flows using different weights.
This case does not show significant differences with the
case where all flows have the same parameters.

Looking at the values in Table 4, and in other exper-
iments not reported here, we can see that algorithms
can have peculiar behaviours in certain conditions.

As an example, the row with 1 flow shows that QFQ
takes a modest performance hit when there is only one
flow backlogged. This happens because, in the dequeue
code, the removal of the flow from the group leaves
the group empty and triggers unnecessary calls to un-
block_groups() and make_eligible(). S-KPS seems to
have slightly better performance in presence of small
burst, presumably due to similar reasons (certain code
paths becoming more frequent). DRR also exhibits sim-
ilar differences in performance when the packet size is
not matched with the quantum size, as certain packets
require two rounds instead of one to be processed.

Overall, these variations tend to be small in absolute
and relative terms, and we only see them because we are
dealing with extremely fast algorithms where even small
changes in the instruction counts can be measured.

8. AVAILABILITY
A complete implementation of

QFQ and S-KPS is available at
http://info.iet.unipi.it/%7eluigi/research.html
The code includes kernel modules for use with Linux
and FreeBSD, as well as the traffic generator used for
the experiments. To the best of our knowledge, this the
first publicly available implementation of a scheduler
of this class (O(1) time and near-optimal WFI).

9. CONCLUSIONS
In this paper we presented QFQ, an approximated

implementation of WF2Q+ which can run in constant
time, with very low constants and using extremely sim-
ple data structures. Together with a detailed descrip-
tion of the algorithm, we provide a theoretical analysis
of its service properties, and present an accurate perfor-
mance analysis, comparing QFQ with a variety of other
schedulers.

The experimental results show that QFQ lives up to
its promises. The scheduler only takes 110 ns per en-
queue()/dequeue() pair, which is only twice the time
taken by DRR. The algorithm is based on extremely
simple instructions, and uses very small and localized
data structures, which make it amenable to a hardware
implementation.
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APPENDIX

A. PROOFS
We prove here both the properties of the data struc-

ture used in Sec. 4, and the B/T-WFI of QFQ. In
this section we explicitly indicate the time at which
any timestamp is computed to avoid ambiguity, and
we assume that the various quantities (V (t), Sk(t),
...) are computed as described in the QFQ algo-
rithm. Given a generic function of time f(t), we define
f(t+1 ) ≡ limt→t+1

f(t). For notational convenience, we

avoid writing f(t+c ) if f(t) is continuous at time tc. To
further simplify the notation, if the function is discon-
tinuous at a time instant td, we assume, without los-
ing generality, that f(td) ≡ limt→t

−

d
f(t), i.e., that the

function is left-continuous. Finally, recall that all the
quantities used hereafter are also reported in Table 1.

We define the following two notations for conve-
nience:

⌊x⌋σi
≡ ⌊

x

σi

⌋σi , ⌈x⌉σi
≡ ⌈

x

σi

⌉σi

For any positive quantity y < x + σi, we have

⌊y⌋σi
≤ ⌈x⌉σi

. (13)

In fact, x can be written as x = nσi+δ, with 0 ≤ δ < σi.
If δ = 0 then y < (n + 1)σ1 =⇒ ⌊y⌋σi

≤ nσi, ⌈x⌉σi
=

nσi, and the thesis holds; if δ > 0 then ⌊y⌋σi
≤ (n+1)σi,

⌈x⌉σi
= (n + 1)σi, and the thesis holds too.

A.1 Group GBT under QFQ
We start by proving per-group upper bounds for

Si(t)−V (t) (in Theorem 3) and for V (t)−Fi(t) (Theo-
rem 4, supported by the two long Lemmas 1 and 2). The
two bounds represent a group-based variant of the Glob-
ally Bounded Timestamp (GBT) property, normally de-
fined for the flow timestamps in an exact virtual time-
based scheduler. Lemmas 1 and 2 are an adapted ver-
sion of the ones in [?], repeated here for convenience,
with permission from the author.

We will use these bounds to prove both the properties
of the data structure and the B/T-WFI of QFQ.

Theorem 3. Upper bound for Si(t)− V (t).
For any backlogged group i and ∀t

Si(t) ≤

⌈

V (t)

σi

⌉

σi = ⌈V (t)⌉σi
(14)

Proof. By definition (5), at any time t and for any
group i, Si(t) is an integer multiple of σi and, for

any backlogged flow k of the group, Si(t) ≤ Ŝk(t) =
⌊Sk(t)⌋σi

. It follows that, if Sk(t) < V (t) + 2σi, then
(14) trivially holds. Hence, to prove (14) we actually
prove the latter, i.e., that Sk(t) < V (t) + 2σi, and to
prove it we consider only a generic time instant t1 at
which a generic packet for flow k is enqueued/dequeued,
as this is the only event upon which which Sk(t) may
increase.

According to (2), either Sk(t+1 ) = V (t1), in which
case the packet is enqueued and the thesis trivially
holds, or Sk(t+1 ) = F k(t1). In this case flow k must
have had a packet previously dequeued at time tp < t1.

When the packet was dequeued at tp flow k was cer-
tainly eligible, and V (t) is immediately incremented af-
ter the dequeue at tp, so we have F k(t1) = Sk(t+p ) =

Sk(tp) + lk(tp)/φk ≤ V (tp) + σi + lk(tp)/φk ≤ V (tp) +
2σi < V (t+p ) + 2σi, which proves the thesis.

Lemma 1. Let I(t) = {k : k ∈ B(t), Sk(t) ≥ V (t)} be
a subset of flows. Given a constant V ′, ∀t : V (t) ≤ V ′

we have:
∑

k∈I(t)

(

lk(t) + φk[V ′ − F k(t)]
)

≤ V ′ − V (t) (15)

where lk(t) is the size of the first packet in the queue
for flow k at time t.

Proof. By definition, lk(t) = φk[F k(t) − Sk(t)].
Thus, for flows in set I(t) we have lk(t) ≤ φk[F k(t) −
V (t)]. Therefore, with simple algebraic passages:

∑

k∈I(t)

{

lk(t) + φk[V (t)− F k(t)]
}

=
∑

k∈I(t)

{

lk(t) + φk[V (t)− V ′] + φk[V ′ − F k(t)]
}

≤

0
(16)

This implies:
∑

k∈I(t)

{

lk(t) + φk[V ′ − F k(t)]
}

≤
∑

k∈I(t) φk[V ′ − V (t)] ≤

V ′ − V (t)

(17)

where the last passage uses
∑

k∈I φk ≤ 1.

Lemma 2. Let X(t, M) ≡ {k : F̂ k(t) ≤ M} be a
set of flows. Given a constant V ′, we have that ∀t :
L + V ′ ≥ V (t):

∑

k∈X(t,V ′)

(

lk(t) + φk[V ′ − F k(t)]
)

≤ L+V ′−V (t) (18)
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Proof. The proof is by induction over those events
that change the terms in (18): packet enqueues for idle
flows, packet dequeues and virtual time jumps. The
base case where X is empty is true by assumption. For
the inductive proof, we assume (18) to hold at some
time t1.

Packet enqueue for an idle flow: Say a packet of size
l1 of the idle flow k arrives at time t1. V (t) does not
change on packet arrivals except for virtual time jumps,
that are dealt with later.
If after the enqueue of the new packet k /∈ X(t+1 , V ′), i.e.

F̂ k(t+1 ) > V ′, we must consider two sub-cases. First, if
k /∈ X(t1, V

′) nothing changes. Second, if k ∈ X(t1, V
′)

the positive component φk[V ′−F k(t1)] is removed from
the sum, so the left hand side of (18) decreases. In
both sub-cases the lemma holds. The remaining case is
if k ∈ X(t+1 , V ′). Since F̂ k(t+1 ) > F̂ k(t1), this implies
k ∈ X(t1, V

′). In this case lk(t) is incremented by l1,
but F k(t) is incremented by l1/φk, so the left hand side
of (18) remains unchanged and the lemma holds.

Virtual time jump: After a virtual time jump, all
backlogged flows have Sk(t+1 ) ≥ Ŝk(t+1 ) ≥ V (t+1 ). With
regard to the idle flows, we assume that their virtual
start and finish times are pushed to V (t+1 ). By doing
so we do not lose generality, as the virtual start times
of these flows will be lower-bounded by V (t) when they
become backlogged (again). Besides, it is easy to see
that pushing up their virtual finish times may only let
the left side of (18) decrease. In the end Sk(t+1 ) ≥
V (t+1 ) for all flows and, if V ′ ≥ V (t+1 ) then Lemma 1
applies and the lemma holds. For other V ′ in [V (t+1 )−
L, V (t+1 )[, the additional L term in (18) absorbs any
decrement on the right hand side. Therefore, the lemma
holds.

Packet dequeue: Flow k receives service at time t1 for
its head packet of size lk(t1). We have to distinguish two

cases, depending on V ′ and F̂ k(t1).

Case 1 – V ′ ≥ F̂ k(t1). V (t) is incremented exactly
by lk(t1), so the right side of (18) decreases exactly by
lk(t1).

With regard to the left side, the variation of lk(t) can
be seen as the result of first decreasing by lk(t1), which
balances the above decrement of V (t), and then increas-
ing by lk(t+1 ), which is in turn balanced by incrementing

F k(t) by
lk(t+1 )

φk . Hence the lemma holds.

Case 2 – V ′ < F̂ k(t1). In this case all flows h ∈

X(t1, V
′) have F̂h(t1) < F̂ k(t1), so they must have

been ineligible according to their rounded start time,
otherwise the current flow k would have not been cho-
sen. Therefore, V (t1) < Ŝh(t1) ≤ Sh(t1) for all flows in

X(t1, V
′). Lemma 1 applies then for all V ′ ≥ V (t1), i.e.

∑

k∈X(t+1 ,V ′)

(

lk(t1) + φk[V ′ − F k(t1)]
)

≤ V ′ − V (t1).

(19)
Because V (t+1 ) = V (t1)+ lk and we assume L+V ′ ≥

V (t+1 ) after service, we only need to consider V ′ with
L + V ′ ≥ V (t+1 ) + lk before service. Therefore

V ′−V (t1) ≤ (L−lk)+V ′−(V (t+1 )−lk) = L+V ′−V (t+1 )
(20)

and the lemma holds after service.

Theorem 4. Upper bound for V (t)− Fi(t)
For any backlogged group i

V (t) ≤ Fi(t) + L. (21)

Proof. To prove the thesis we will actually prove
the more general inequality V (t) ≤ F̂ k(t) + L for a
generic flow k of group i. The proof is by contradiction.
The only event that could lead to a violation of the
assumption is serving a packet. Assume that at t = t1 :
V (t1) = V1 the lemma holds. A packet p with rounded

finish time F̂1 and length lp is served and afterwards
at time t2 : V (t2) = V2, there is a packet q with finish

time F2, such that F̂2 +L < V2. Denote with Ŝ1 and Ŝ2

the corresponding start times. We need to distinguish
three cases.

Case 1: Packet q is eligible at time t1 according to its
rounded start time. Then, F̂2 ≥ F̂1 (both packets were
eligible at V1 and p was chosen). Applying Lemma 2

with t = t1 and V ′ = F̂2 results in
∑

k∈X(t1,F̂2)

lk(t1)+
∑

k∈X(t1,F̂2)

(F̂2−F k(t1))φ
k ≤ L+F̂2−V (t1)

(22)

Because F k(t) ≤ F̂ k(t), the second term on the left side
of the inequality is non-negative and therefore

lp ≤
∑

k:F̂ k(t)≤F̂2

lk(t) ≤ L + F̂2 − V1 (23)

V2 − V1 ≤ L + F̂2 − V1 (24)

V2 ≤ F̂2 + L (25)

The step from (23) to (24) uses V1 + lp = V2.
Case 2: Packet q is not eligible at V1 according to

its rounded start time, but becomes eligible between V1

and V2. Then, Ŝ2 ≥ V1. Virtual time advances by at
most L and therefore:

F̂2 ≥ Ŝ2 ≥ V1 ≥ V2 − L (26)

Case 3: Packet q is not eligible according to its
rounded start time after service to p, therefore V2 is
reached by a virtual time jump before q can be served.
In this case:

F̂2 ≥ Ŝ2 ≥ V2 ≥ V2 − L (27)
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This concludes the proof.

A.2 Proofs of the data structure properties
We can now prove the theorems used in Sec. 4 con-

sidering the only two events that can change the state
of the scheduler, namely packet enqueue and packet de-
queue. We start from Theorem 5, which gives the per-
group slot occupancy.

Theorem 5. At all times, only the first 2+⌈ L
σi
⌉ con-

secutive slots beginning from the head slot of a group
may be non empty.

Proof. Consider a generic flow k belonging to a
group i. A new virtual start time may be assigned to
the flow (only) as a consequence of the enqueueing/de-
queueing of a new packet pk,l at a time instant tp. As
in the proof of Lemma 3, from (2) Sk(t+p ) may be equal

to either (a) V (tp), or (b) F k(tp), where we assume
F k(tp) = 0 if pk,l is the first packet of the flow to be
enqueued/dequeued.

In the first case, according to (21), Sk(t+p ) = V (tp) ≤

Fi(tp) + L ≤ Si(tp) + 2σi + L ≤ Si(tp) + 2σi + ⌈ L
σi
⌉σi.

In the second case, neglecting the trivial sub-case
F k(sk,l−1 +) = 0, we can consider that flow k had to
be a head flow when pk,l−1 was served. Hence, accord-
ing to (5), Sk(tp) < Si(tp) + σi . From (2), this implies
Sk(t+p ) = F k(tp) < Si(tp) + 2σi ≤ Si(tp) + 2σi.

Considering both cases, it follows that, ∀t Sk(t) −
Si(t) < (2 + ⌈ L

σi
⌉)σi, i.e., that at any time the virtual

start times of all the backlogged flows of a group may
belong only to the 2 + ⌈ L

σi
⌉ consecutive slots beginning

from the one the head slot queue is associated to, which
proves the thesis.

Using the following lemma, we want now to prove
that ER is ordered by virtual finish times.

Lemma 3. Let t be the time instant at which a pre-
viously idle group i becomes backlogged, or at which the
group, previously ineligible, becomes eligible, or finally
at which the virtual finish time of the group decreases.

We have that Fh(t) ≤ Fi(t
+
) for any backlogged group

h with h < i.

Proof. For Fi(t) to decrease, Si(t) must decrease as
well. According to the enqueue() and dequeue(), this
can happen only in consequence of the enqueueing of a
packet of an empty flow of the group. As this is exactly
the same event that may cause a group to become back-

logged, then, from (2) we have Si(t
+
) ≥ ⌊V (t)⌋σi

both
if the group become backlogged and if Fi(t) decreases.
Substituting this inequality, which finally holds also if
the group becomes eligible at time t, and (14) in the

following difference we get:

Fh(t)− Fi(t
+
) =

Sh(t) + 2σh − Si(t
+
)− 2σi =

Sh(t)− Si(t
+

) + 2σh − 2σi ≤
⌈V (t)⌉σh

− ⌊V (t)⌋σi
+ 2σh − 2σi ≤

⌈V (t)⌉σi
− ⌊V (t)⌋σi

+ 2σh − 2σi ≤
σi + 2σh − 2σi =

2σh − σi ≤ 0

(28)

where ⌈V (t)⌉σh
≤ ⌈V (t)⌉σi

and the last inequality fol-
low from that, as i > h, σi ≥ 2σh.

The following theorem guarantees that ER is always
ordered by virtual finish times. Then it guarantees that
this order is never broken when one or more groups are
inserted into it during QFQ operation.

Theorem 6. Set ER is ordered by group virtual fin-
ish time.

Proof. We will prove the thesis by induction. In
the base case ER = ∅ the thesis trivially holds. The
ordering of ER may change only when one or more
groups enter the set. This can happen as a consequence
of 1) a group entering ER as it becomes backlogged,
2) one or more groups moving from IR to ER, 3) one
or more groups moving from EB to ER. Let i be a
group entering ER at time t1 for one of the above three
reasons, and let the thesis hold before time t1.

In the first case, thanks to Lemma 3 Fi(t
+
1 ) is not

lower than the virtual finish times of the groups in ER

with lower index. By definition of ER, Fi(t
+
1 ) is also

not higher than the virtual finish times of the groups in
ER with higher index.

In the second case, given a group h ∈ ER with h < i,
Si(t1) ≥ Sh(t1) because either group h was already in
ER before time t1, or group h belonged to IR, which
is ordered by virtual start times according to [Sec.4.1.3,
item 2]. This implies Fi(t1) ≥ Fh(t1) because σi ≥ 2σh.
By definition of IR, Fi(t1) is also not higher than the
virtual finish times of the groups in ER with higher
index.

In the third case, since group i is not blocked any
more, Fi(t1) is not higher than the virtual finish times
of the groups in ER with higher index. With regard to
the groups with lower index than i, for group i to be
blocked before time t1 there had to be a group b ∈ ER

with b > i and Fb(t1) < Fi(t1). Since we assume that
ER is ordered by virtual finish time before time t1, then
Fb(t1), and hence Fi(t1) is not lower than the virtual
finish times of all the lower index groups in ER.

To prove that EB enjoys the same order property
as ER, we need first a further lemma. The validity of
the lemma depends on the timestamp back-shifting per-
formed under QFQ when inserting a newly backlogged
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group into EB. Hence this is the right moment to ex-
plain in detail this operation. When an idle group i
becomes blocked after enqueuing a packet of a flow k at
time tp, the timestamps of flow k are not updated using
the following variant of (2):

Sk(t+p )← max
[

min(V (tp), Fb(tp)), F k(tp)
]

F k(t+p )← Sk + lk(t+p )/φk (29)

where b is the lowest order group in ER such that b > i.
Basically, with respect to the exact formula, Fb(tp) is
used instead of V (tp) if V (tp) > Fb(tp). This is done
because otherwise the ordering by virtual finish time in
EB may be broken. It would be easy to show that this
would happen if an idle group becomes blocked when
V (t) is too higher than the virtual finish time of some
other blocked group h < i.

With regard to worst-case service guarantees, in case
V (tp) > Fb(tp) in (29), group i just benefits from the
back-shifting, whereas the guarantees of the other flows
are unaffected. To prove it, consider that the guaran-
tees provided to any flow do not depend on the actual
arrival time of the packets of the other flows. Hence one
can still “move” a pair of timestamps backwards, pro-
vided that this does not lead to an inconsistent sched-
ule, i.e., provided that the resulting worst-case schedule
for all the flows is the same as if the packet had actu-
ally arrived at a time instant such that the would have
got exactly those timestamps without using any back-
shifting. This is what happens using (29), for the follow-
ing reason. Should the packet that lets group i become
backlogged have arrived at a time instant tp ≤ tp at
which V (tp) = Fb(tp), group i would have however got
a virtual finish time higher than Fb(tp). Hence group i
should not have been served before group b, exacly as
it happens in the schedule resulting from timestamping
group i with (29) at time tp.

We can now prove the intermediate lemma we need
to finally prove the ordering in EB.

Lemma 4. If a pair of groups h and i with h < i
are blocked at a generic time instant t2, then Sh(t2) ≤
Fi(t2).

Proof. We consider two alternative cases. The first
is that Sh(t2) has been last updated at a time instant
t1 ≤ t2 using (29). The second is that, according to (2)
and (5) there are at least one head flow k of group h and
a time instant t1 ≤ t2 such that Sh(t2) = ⌊F k(t1)⌋σh

.
In the first case we have Sh(t2) ≤ Fb(t1), where b is

the lowest order group in ER such that b > h. We can
consider two sub-cases. First, group i is already back-
logged and eligible at time t1. It follows that, if i ≥ b
then Fi(t1) ≥ Fb(t1). Otherwise, from the definition of
b, group i is necessarily blocked, and Fi(t1) > Fb(t1)
must hold again for group b not to be blocked. In the
end, regardless of whether group i is ready or blocked,

Fi(t2) ≥ Fi(t1) > Fb(t1) = Sh(t2) and the thesis holds.
In the other sub-case, i.e., group i is not ready and eligi-
ble at time t1, thanks to Lemma 3 group i cannot hap-
pen to have a virtual finish time lower than Fh(t1) dur-
ing (t1, t2]. Hence Fi(t2) ≥ Fh(t1) = Fh(t2) > Sh(t2)
and the thesis holds.

In the other case, i.e., Sh(t2) = ⌊F k(t1)⌋σh
, we prove

the thesis by contradiction. Suppose that Sh(t2) >
Fi(t2). Flow k must have necessarily been served with
F k(t0) = F k(t1) at some time t0 ≤ t1. In addition,
for Sh(t2) > Fi(t2) to hold, F k(t1) > Fi(t2) and hence
F k(t0) > Fi(t2) should hold as well. As flow k had to
be a head flow at time t0, it would follow that

Fh(t0) ≥ F k(t0) > Fi(t2). (30)

We consider two cases.
First, group i is backlogged at time t0. If Fi(t0) <

Fh(t0), then Si(t0) = Fi(t0) − 2σi < Fh(t0) − 2σi <
Sh(t0), because σi > σh. Hence, both group h and i
would be eligible, and group h could not be served at
time t0. In follows that Fi(t0) ≥ Fh(t0) should hold.
This inequality and (30) would imply Fi(t0) > Fi(t2).
Should not Fi(t) decrease during [t0, t2], the absurd
Fi(t2) > Fi(t2) would follow. But, from enqueue() and
dequeue() it follows that the only event that can let
Fi(t) decrease is the enqueueing of a packet of an idle
flow of group i that causes Si(t) to decrease (lines 12-
18 of enqueue). Let Fi,min be the minimum value that
Fi(t) may assume in consequence of this event.

Since ∀t ∈ [t0, t2] V (t) ≥ Sh(t0), according to (2), (5)
and (30), Fi,min ≥ ⌊Sh(t0)⌋σi

+2σi ≥ Sh(t0)−σh+2σi =
Fh(t0)−3σh+2σi > Fh(t0) > Fi(t2), which again would
imply the absurd Fi(t2) > Fi(t2).

The second case is that group i is not backlogged at
time t0. As the event that would let the group become
backlogged after time t0 is the same that might have let
Fi(t) decrease in the other case, then, using the same
arguments as above, we would get the same absurd.

In the end, Sh(t2) ≤ Fi(t2) must hold.

The following theorem guarantees that EB is always
ordered by virtual finish time (hence, as previously
proven for ER this order is never broken during QFQ
operations).

Theorem 7. Set EB is ordered by group virtual fin-
ish time.

Proof. We will prove the thesis by induction. In the
base case EB = ∅ the thesis trivially holds. The only
event upon which the the ordering of EB may change
is when one or more groups enters the set. The three
events that may cause a group to become blocked are 1)
the enqueueing/dequeueing of a packet of a flow of an
idle group j > i, which lets group j get a lower virtual
finish time than group i (groups with lower order than i
can never block group i); 2) the enqueueing/dequeueing
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of a packet of a flow of group i itself, which lets the
virtual finish time of group i become higher than the
virtual finish of some higher order group; 3) the growth
of V (t), which causes one or more groups to move from
IB to EB.

With regard to the first event, it is worth noting that
group j can cause group i to become blocked only if
group j becomes backlogged or if Fj(t) decreases. Let t1
be the time instant at which one of these two events oc-
curs and such that EB is ordered up to time t1. Thanks
to Lemma 3, Fi(t1) ≤ Fj(t

+
1 ) and hence the event can-

not let group i become blocked.
Suppose now that, at time t1, group i enters EB as

a consequence of either a packet of a flow of the group
being enqueued/dequeued or the growth of V (t). We
will prove that, given two any blocked groups h < i and
j > i, Fh(t1) ≤ Fi(t

+
1 ) and Fi(t

+
1 ) ≤ Fj(t1) hold (where

Fi(t
+
1 ) = Fi(t1) in case group i enters EB from IB).

With regard to a blocked group h < i, if group i en-
ters EB as a consequence of a packet enqueue/dequeue,
then, from Lemma 4 and the fact that, as Fi(t) is an
integer multiple of σi, Fi(t

+
1 ) ≥ Fi(t1) + σi, we have

Fi(t
+
1 )− Fh(t1) ≥

Fi(t1) + σi − Sh(t1)− 2σh ≥
Fi(t1) + σi − Fi(t1)− 2σh ≥

σi − 2σh ≥ 0

(31)

where the last inequality follows from σi ≥ 2σh. On the
other hand, if group i enters EB from IB, then Si(t1) ≥
Sh(t1) because either group h was already eligible before
time t1, or group h belonged to IB, which is ordered by
virtual start time according to [Sec.4.1.3, item 2]. This
implies Fi(t1) ≥ Fh(t1) because σi ≥ 2σh.

With regard to a blocked group j > i, let b > j > i
be the highest order group that is blocking group j at
time t. Independently of the reason why group i enters
EB, from Lemma 4 we have

Si(t
+
) ≤ Fb(t) ≤ Fj(t)− σj (32)

where the last inequality follows from Fb(t) < Fj(t) and
the fact that both Fj(t) and Fb(t) are integer multiples
of σj . Substituting (32) in what follows:

Fi(t
+
) =

Si(t
+
) + 2σi ≤

Fj(t)− σj + 2σi ≤
Fj(t)− 2σi + 2σi

(33)

where the penultimate inequality follows from that,
since j > i, σj ≥ 2σi.

Finally, we can prove the theorem that allows QFQ
to quickly choose the groups to move from EB/IB to
ER/IR.

Theorem 8. Group unblocking Let i be the group
that would be served upon the next packet dequeue at

time t, and assume that there is no group j : j >
i, Fj(t) = Fi(t); in this case, if group i is actually served

and Fi(t
+
) > Fi(t) or if group i becomes idle at time t,

then all and only the groups in EB/IB and with order
lower than i must be moved into ER/IR.

Proof. To prove the thesis, we first prove that group
i is the only group that can block a group h < i. The
proof is by contradiction. Suppose for a moment that
a group j > i blocks group h. Since Fi(t) < Fj(t) must
hold for group i not to be blocked, and both Fi(t) and
Fj(t) are integer multiples of σi, then

Fi(t) ≤ Fj(t)− σi. (34)

Combining this inequality with Lemma 4, we get
Sh(t) ≤ Fj(t)−σi and hence, considering that σi ≥ 2σh,
Fh(t) = Sh(t) + 2σh ≤ Fj(t) − σi + 2σh ≤ Fj(t). This
contradicts the fact that group j blocks group h.

As a consequence, if Fi(t) increases, then, thanks to
(31) and (33), all and only the blocked groups h < i
become ready. The same happens if group i becomes
idle as a consequence of a packet dequeue.

A.3 Proofs of the service properties

Theorem 9. B-WFI for QFQ For a flow k belong-
ing to group i QFQ guarantees

B-WFIk = 3φkσi + 2φkL. (35)

Proof. We consider two cases. First, flow k is eligi-
ble at time t1. In this case, we consider that, given
the virtual time V k(t) of flow k in the real system,
V k(t1) ≤ F k(t1) and V k(t2) ≥ Sk(t2). Hence, consid-
ering also that, thanks to (21), Si(t2) = Fi(t2)− 2σi >
V (t2)− L− 2σi, we have:

W k(t1, t2) =
φkV k(t1, t2) =

φk(Sk(t2)− V k(t1)) ≥
φk(Sk(t2)− F k(t1)) ≥
φk(Si(t2)− F k(t1)) >

φk(Si(t2)− (Sk(t1) + σi)) >
φk(V (t2)− L− 2σi − (V (t1) + σi)) =

φk(V (t2)− V (t1)− L− 3σi) =
φk(V (t2)− V (t1))− φkL− 3φkσi >

φkW (t1, t2)− 2φkL− 3φkσi

(36)

where the last inequality follows from the fact that, be-
cause of the immediate increment of V (t) as a packet is
dequeued (see updateV()), V (t2)− V (t1) ≥W (t1, t2)−
L.

Second, flow k is not eligible at time t1. This implies
that the flow virtual time is exactly equal to Sk(t1) at
time t1 and hence, considering that, Sk(t1) ≤ V (t1)+σi,
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we have:

W k(t1, t2) ≥
φk(Sk(t2)− Sk(t1)) ≥
φk(Si(t2)− Sk(t1)) >

φk(V (t2)− L− 2σi − Sk(t1)) >
φk(V (t2)− L− 2σi − (V (t1) + σi) >

φk(V (t2)− V (t1)− L− 3σi) >
φkW (t1, t2)− 2φkL− 3φkσi

(37)

Theorem 10. T-WFI for QFQ For a flow k be-
longing to group i, and a link with constant rate R,
QFQ guarantees

T-WFIk = (3σi + 2L)
1

R
. (38)

Proof. Assume a generic packet arriving at ta and
completing service at tc. Let Qk(t+a ) be the backlog of
flow k just after the arrival of the packet. Because of
the immediate increment of V (t) upon packet dequeue
we have V (t+a , tc) ≥ W (ta, tc) − L. Since W (ta, tc) =
(tc − ta)R, it follows that

tc − ta ≤
V (tc)−V (t+a )+L

R
≤

Fi(tc)+L−V (t+a )+L

R
=

Fi(tc)−V (t+a )+2L

R
.

(39)

To prove the theorem we will find an upper bound
to Fi(tc) and a lower bound to V (t+a ). Since the ap-
proximate virtual start time of the flow increases by σi

in any time interval [t1, t2] during which an amount of
bytes φkσi of the flow are transmitted, and such that
there is still backlog at time t2, it follows that

Fi(tc) =
Si(tc) + 2σi =
Si(tc) + 2σi ≤

Si(t
+
a ) + σi⌊

Qk(t+a )
φkσi

⌋+ 2σi ≤

Si(t
+
a ) + σi

Qk(t+a )
φkσi

+ 2σi =

Si(t
+
a ) +

Qk(t+a )
φk + 2σi

(40)

Substituting this inequality and V (t+a ) ≥ Si(t
+
a )− σi

(derived from (14)) in (39), we get

tc − ta ≤

Si(t
+
a )+

Qk(t+a )

φk
+2σi−Si(t

+
a )+σi+2L

R
=

Qk(t+a )

φk
+3σi+2L

R

(41)

which proves the thesis.
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