
netmap: memory mapped
access to network devices

Luigi Rizzo, Matteo Landi, Universit̀a di Pisa, Italy
rizzo@iet.unipi.it - http://info.iet.unipi.it/∼luigi/netmap/

Moving packets quickly between the wire and the application is a must for systems
such as software routers, switches, firewalls, traffic generators andmonitors. But at
10 Gbit/s line rate equals to 14.88 Mpps per port, or 67.2 ns per packet. Sure, there
are a few custom solutions [1, 2, 3, 4, 5] that run really fast. But howdo we achieve
such speeds (and remain compatible with applications written in the past 20 years) on
general purpose OS designed when “fast” was 2-3 orders of magnitude lower ?

netmap [6] addresses the problem by making the datapath between the wireand
userspace applications as fast as possible, but otherwise leaving unchanged the rest of
the OS, and most/all user APIs. As a result we achieved 10..20 times faster I/O rates
with minimal modifications to the operating system and applications.

Why current APIs are slow ?

Raw packet access normally uses a socket API orlibpcap. This involves syscall
and memory copy costs (often per packet) just to enter the kernel.Within the kernel,
device drivers encapsulate packets into containers (mbuf/skbuf/NdisPacket) adding
even more overhead due to allocations, copies, buffer sharing, synchronization.

As a result, current per-core
performance on standard OS is
0.5 Mpps for userspace apps, up
to 1..2 Mpps for in-kernel apps,
and poor scalability with num-
ber of cores. Custom systems
(in-kernel Click [1]) reach about
4 Mpps, and scale slightly better
with cores.

NIC registers

Hardware

head

tail

...

...

phy_addr

len

NIC ring

Operating System

mbufs

v_addr

v_addr

v_addr

...

...

Buffers

...

n_descs

base

The NIC would be able to manage circular lists of buffers with little/no CPU inter-
vention, but the OS does not make good use of these features.

netmap’s key ideas

•a shadow copy of the NIC’s ring (netmap ring) supports batching of requests and
removes the need for mbufs/skbufs;

•efficient synchronization usingpoll();
•carefully designed API, event loops need only one syscall per iteration;
• full support for multicore and multiqueue NICs throughsetaffinity();

host

stack

HW rings

netmap API

mmap()-ed region

num_rings

ring_ofs[]

ring_size
cur
avail
flags
buf_ofs
flags len index

phy_addr
len

pkt_buf

pkt_buf

pkt_buf

pkt_buf

netmap_if netmap_ring NIC ring Application

Expensive software modifications are minimized as follows:
•device independent API, does not rely on specific hw features;
•minimal, mostly mechanical modifications to existing device drivers;
•packets from/to the host stack can still use the NIC;
•we provide an efficient libpcap emulation library on top of the native API.
Most of these ideas above have been proposed before, but separately. None of the
existing systems to date (though [4] comes close) puts all these features together into
a high performance and general purpose framework for packet I/O from userspace. A
well engineered architecture is much more than a collection of parts.

Using netmap (native API)

Threads open/dev/netmap and issue an
ioctl() to switch the NIC to “netmap”
mode, disconnectiong the datapath from the host
stack. Data packets and netmap rings are in an
mmap()’ed region with well defined ownership,
so that lock free access is possible. Netmap rings
are updated bypoll() or ioctl(), and their
content is validated by the kernel so a faulty pro-
gram cannot crash the system. File descriptors
and threads can be associated to individual rings
(and cores). A thread can manage multiple inter-
faces and do zero-copy forwarding to other inter-
faces or to the host stack.

NIC TX

rings

Host RX

ring

Host TX

ring

NIC RX

rings

netmap client

Sample code for a packet generator:

struct netmap_if *nifp;
struct nmreq req;
char *mem;
struct pollfd fds;

bzero(&req, sizeof(req));
bzero(&fds, sizeof(fds));
fds.fd = open("/dev/netmap", O_RDWR);
strcpy(req.nm_name, "ix0");
ioctl(fds.fd, NIOCREG, &req);
mem = mmap(0, req.memsize, fds.fd);
nifp = NETMAP_IF(mem, req.offset);
fds.events = POLLOUT;
for (;;) {
poll(fds, 1, -1);
for (r = 0; r < req.num_queues; r++) {

struct netmap_ring *ring = NETMAP_TXRING(nifp, r);
while (ring->avail-- > 0) {
int i = ring->cur;
char *buf = NETMAP_BUF(ring, ring->slot[i].buf_index);
... prepare packet in buf ...
ring->slot[i].len = ... packet length ...
ring->cur = NETMAP_NEXT(ring, i);

}
}

}

Performance

0

2

4

6

8

10

12

14

16

0 0.5 1 1.5 2 2.5 3

T
h

ro
u

g
h

p
u

t 
(M

p
p

s
)

Frequency (GHz)

Wire limit: 14.88 Mpps

4 cores
2 cores
1 core

netmap uses 70..90 CPU clocks
to send or receive one packet, 10-
20 times less than standard APIs,
and has with very good scalability
on clock frequency and number of
cores.
With netmap we do line rate
packet generation at 10 Gbit/s
(14.88 Mpps) with a single core
running at 1.2 GHz (and low CPU
occupation at higher clock rates).
Packet reception is equally fast.

Simple packet forwarding runs at over 10 Mpps again using a singlecore.

In many cases the bottleneck is not any more
the CPU, but the NIC itself (most models have
limitations on RX or TX rates at some or all
packet sizes) and the I/O buses. Other than
that, performance usually beats that of the best
in-kernel applications.
We have built anetmapcap, a libpcap emula-
tion library on top of netmap so that porting
applications is straightforward.

Application Speed
(Mpps)

in-kernel bridging 0.69
native netmap forwarding 10.66
netmapcap forwarding 7.50
libpcap OpenvSwitch 0.78
netmapcap OpenvSwitch 2.98
Click userspace 0.40
netmapcap Click 3.95

Applications, especially I/O intensive ones, esperience large speedups. As an exam-
ple, Click userspace is now competitive or better than the in-kernel version.

netmap (available for FreeBSD) consists of about 2000 lines of code for device
functions (ioctl, select/poll) and driver support, plus individual driver modifications
(mostly mechanical, about 500 lines each) to interact with thenetmap rings. To date,
netmap support is available for the Intel 10 Gbit/s adapters (ixgbe driver), and for
various 1 Gbit/s adapters (Intel, RealTek, Nvidia), more are being added.

Acknowledgements: Work supported by EC FP7-ICT Project “CHANGE” (n.
257422). Thanks to Intel Research Berkeley for funding the hardware used to run the
experiments.

References
[1] E.Kohler, R.Morris, B.Chen, J.Jannotti, M.F.Kaashoek, The Click modular router, ACM TOCS, vol.18 n.3, pp.263-297,

ACM, 2000

[2] M.Dobrescu, N.Egi, K.Argyraki, B.G.Chun, K.Fall, G. Iannaccone, A.Knies, M.Manesh, S.Ratnasamy, RouteBricks: Ex-
ploiting parallelism to scale software routers, ACM SOSP, 2009

[3] S. Han, K.Jang, K.Park, S.Moon, PacketShader: a GPU-accelerated software router, Proc. of ACM SIGCOMM 2010, New
Delhi, India

[4] Kaist’s Packet I/O engine, http://shader.kaist.edu/packetshader/ioengine/

[5] Max Krasnyansky, UIO-IXGBE, Qualcomm, https://opensource.qualcomm.com/wiki/UIO-IXGBE

[6] L. Rizzo, netmap: fast and safe access to network adaptersfor user programs, Tech. Report, Univ. di Pisa, June 2011,
http://info.iet.unipi.it/∼luigi/netmap/


