
1

QFQ: Efficient Packet Scheduling with Tight

Guarantees
Fabio Checconi, Luigi Rizzo, and Paolo Valente

Abstract—Packet scheduling, together with classification, is
one of the most expensive processing steps in systems providing
tight bandwidth and delay guarantees at high packet rates.
Schedulers with near-optimal service guarantees and O(1) time
complexity have been proposed in the past, using techniques such
as timestamp rounding and flow grouping to keep their execution
time small. However, even the two best proposals in this family
have a per-packet cost component which is linear either in
the number of groups, or in the length of the packet being
transmitted. Furthermore, no studies are available on the actual
execution time of these algorithms.

In this paper we make two contributions. Firstly, we present
QFQ, a new O(1) scheduler that provides near-optimal guaran-
tees, and is the first to achieve that goal with a truly constant
cost also with respect to the number of groups and the packet
length. The QFQ algorithm has no loops, and uses very simple
instructions and data structures which contribute to its speed of
operation.

Secondly, we have developed production-quality implemen-
tations of QFQ and of its closest competitors, which we use
to present a detailed comparative performance analysis of the
various algorithms. Experiments show that QFQ fulfils our
expectations, outperforming the other algorithms of the same
class. In absolute terms, even on a low end workstation, QFQ
takes about 110 ns for an enqueue()/dequeue() pair (only twice
the time of DRR, but with much better service guarantees).

I. INTRODUCTION

If an outgoing link on a network node is fully utilized, the only

option to provide bandwidth or delay guarantees on that link

is enforcing a suitable packet scheduling policy. Fine-grained

per-flow guarantees can be provided with an IntServ [12]

approach, but this requires a reservation protocol (with well-

known scalability problems), and imposes a non-negligible

load on packet classifiers and schedulers, who have to deal

with a potentially large number of flows in progress (up to

105 according to [10]). Besides memory costs to keep per-

flow state, the time complexity and service guarantees of the

scheduling algorithm can be a concern. DiffServ [12] “solves”

the space and time complexity problem by aggregating flows

into a few classes with predefined service levels, and schedules

the aggregate classes. Per-flow scheduling within each class

may still be needed to provide guarantees to individual flows.

The above considerations motivate the interest for packet

schedulers that, even in presence of a large number of flows,

can offer low complexity and tight guarantees.

Fabio Checconi is with IBM Research, Multicore Computing Department,
Yorktown Heights, NY (this work was completed while he was with the Scuola
Superiore S. Anna, Pisa, Italy).

Luigi Rizzo is with the Università di Pisa, Pisa, Italy
Paolo Valente is with the Università di Modena, Modena, Italy

Round Robin schedulers have O(1) time complexity, but

(with the exception of FRR [24]) have O(N) worst-case

deviation with respect to the ideal service that the flow should

receive over any given time interval.

More accurate schedulers have been proposed, implement-

ing approximate versions of the worst-case optimal WF2Q+

scheduler [2]. Thanks to flow grouping and timestamp round-

ing, first introduced in [17], they feature O(1) time complexity

in the number of flows, and near-optimal deviation from the

ideal service (WFI, see Section II). However, even the two

most efficient proposals in this class, namely Group Fair

Queueing (GFQ) [17] and Simple KPS (S-KPS) [9], as well

as FRR [24], have some non-constant components in their

time complexity, as discussed in Sec. II, and are significantly

slower than Round Robin schedulers. Section VII-C shows

some performance comparison.

Our contributions: In this paper we first present Quick

Fair Queueing (QFQ), a new scheduler with true O(1) time

complexity, implementing an approximate version of WF2Q+

with near-optimal service guarantees. Secondly we provide an

extensive comparison of the actual performance of production-

quality versions of QFQ and several competing algorithms.

The key contribution of QFQ is the introduction of a novel

mechanism (Group Sets, Section IV-3) which removes the

linear component (in the number of groups or packet size)

from previous quasi-O(1) schedulers. In QFQ, groups of flows

are partitioned into four sets, each represented by a machine

word and constructed so that all bookkeeping to implement

scheduling decisions can be done using simple and constant-

time CPU instructions such as AND, OR, XOR and Find First

bit Set1 (which we use to implement constant-time searching).

The major improvement of QFQ over the previous proposals

is on performance: the algorithm has no loops, and the sim-

plicity of the data structures and instructions involved makes

it well suited to hardware implementations. The execution

time is within two times that of DRR, and consistently

about three times faster than S-KPS, across a wide variety

of configurations and CPUs. Speed does not sacrifice service

guarantees: the WFI of QFQ is slightly better than S-KPS, and

close to the theoretical minimum.

Paper Structure: Section II complements this introduction

by discussing related work. In Section III we define the

system model and other terms used in the rest of the paper.

Section IV presents the QFQ algorithm in detail and illustrates

its implementation. The correctness of the properties used

1The Find First bit Set instruction (called ffs() or BSR) can locate in
constant time the leftmost bit set in a machine word. It uses 1..3 clock cycles
on modern CPUs such as Intel Core 2, Core i7, or Athlon K10.

2

in QFQ is then proved in Section V. Section VI gives an

analytical evaluation of the (worst-case) service guarantees. In

Section VII-A we present the results of some ns2 simulations

to compare the delay experienced by various traffic patterns

under different scheduling policies. Finally, Section VII-B

measures the actual performance of the algorithm on a real

machine, comparing production-quality implementations of

QFQ, S-KPS, and other schedulers (FIFO, DRR and WF2Q+).

II. BACKGROUND AND RELATED WORK

Packet schedulers can be classified based on their service

properties and time/space complexity. Relevant problem di-

mensions are the number of flows, N , and the maximum

size L of packets in the system. The service metrics defined

in the literature try to measure, in various dimensions, the

differences between the scheduler under analysis and an ideal

fluid system which implements perfect bandwidth distribution

over any time interval.

Two important service metrics are the Bit- and Time- Worst-

case Fair Index (B-WFI and T-WFI [2], [3]). B-WFIk (defined

in Sec. VI-A) represents the worst-case deviation, in terms

of service, that a flow k may experience over any time

interval with respect to a perfect weighted bandwidth sharing

server during the same interval. T-WFIk, defined in Sec. VI-B,

expresses similar deviations in terms of time. From the WFIs

it is easy to compute the minimum bandwidth and the worst-

case packet completion times guaranteed for a flow. But the

WFIs indicate more than just worst-case packet delays or per-

flow lag (the difference between the service received in an

ideal, perfectly fair system, and the one received in the actual

system). The WFIs capture the fact that an actual scheduler

may serve some packets much earlier than the ideal system,

and this may result in long intervals during which a flow

receives no service to compensate for that received in advance.

This may not affect the lag, but causes extreme burstiness in

service, which has bad effects on protocols and applications

(e.g., TCP’s rate adaptation) as well as on per-flow lag and

delay guarantees in a hierarchical setting [2].

In contrast, the WFIs do not measure another important

service property: how fairly a scheduler distributes the ex-

cess bandwidth when not all the flows are backlogged. This

property can be measured with an early metric, called relative

fairness in [8] and proportional fairness in [24], and equal

to the worst-case difference between the normalized service

(service divided by the flow’s weight) given to any two

backlogged flows over any time interval [16].

Round Robin Schedulers: Round Robin (RR) schedulers

and variants (Deficit Round Robin [15]) are the usual choice

when fast schedulers are needed. They lend naturally to O(1)
implementations with small constants. Several variants have

been proposed (Smoothed Round Robin [6] and G-3 [7],

Aliquem [11] and Stratified Round Robin [13]) to mitigate

some of their shortcomings (burstiness, etc.). Nevertheless, for

all but one of the schedulers in this family, and irrespective

of the weight φk of any flow k, both the flow’s packet delay

and the B-WFIk have an O(NL) component.2

FRR [24] differs from other RR proposals in that, similarly

to QFQ, it divides flows into groups and schedules packets in

two phases: first, an extended version of WF2Q [3] schedules

groups; following that, an extended version of DRR [15]

schedules flows within groups. In FRR, a flow k belongs to

group i such that i =
⌈

logC φk
⌉

, where φk is the flow’s

weight.3 C is an integer constant that can be freely chosen

to set the desired tradeoff between runtime complexity and

service guarantees. As shown by its authors in [24, Theorem

4], FRR has T-WFIk = 12CL
rk

+ (G − 1)L
R

, where G is the

number of groups, rk is the minimum bandwidth guaranteed

to flow k and R is the link rate. The time complexity is

O(G logG). T-WFI grows with C, and in the best case

(C = 2), with weights ranging between 10−6 and 1, we would

have G =
⌈

logC 106
⌉

= 20 and hence T-WFIk = 24 L
rk

+19L
R

,

much higher than the T-WFIk of QFQ (3 L
rk

+ 2L
R

).

Exact Timestamp-based Schedulers: To achieve a lower

WFI than what is possible with RR schedulers, other, modern

scheduler families try to serve flows as close as possible

(i.e., not too late and not too early) to the service provided

by an internally-tracked ideal system, using a concept called

eligibility. We call them timestamp-based schedulers as they

typically timestamp packets with some kind of Virtual Time

function, and try to serve them in ascending timestamp order,

which has an inherent Ω(logN) complexity [23]. This bound

is matched by some actual algorithms [21].

With this approach, schedulers such as WF2Q [3] and

WF2Q+ [2] offer optimal lag, packet delay and WFI, i.e.,

they achieve the lowest possible values for a non-preemptive

system. In particular, their lag and B-WFI are both O(L) with

very small constants (see Sec. VI-A), much better than the

O(NL) of most RR schedulers.

Fast Timestamp-based Schedulers: Breaking the theoretical

Ω(logN) bound requires the use of approximate timestamps,

to reduce the complexity of the sorting steps. Some schedulers

(such as GFQ, S-KPS, and LFVC) use this approach to achieve

O(1) complexity with respect to the number of flows, while

preserving O(L) B-WFI.

GFQ [17] uses variable timestamp rounding, splits flows

into G groups, and relies on a calendar queue to sort flows

within the same group. Its complexity is O(G). S-KPS [9]

uses a data structure called Interleaved Stratified Timer Wheels

(ISTW) to execute packet enqueue and dequeue operations

at a worst-case cost independent of even the number of

groups, though it requires O(L) bookkeeping steps during

packet transmissions. Finally, LFVC [20] rounds timestamps

to multiples of a fixed constant, relying on van Emde Boas

priority queues for sorting (hence O(log logN) complexity).

Unfortunately LFVC has a worst-case complexity of O(N),
because the algorithm maintains separate queues for eligible

and ineligible flows, and individual events may require to move

up to O(N) flows from one queue to the other.

2Such worst case behaviour is easy to achieve in practice (e.g., with a
few high-weight flows, and a large number of low-weight flows). In these
circumstances, the high-weight flows will experience a very bursty service,
with unpleasant effects for downstream devices and applications.

3QFQ also defines groups of flows, but using a different formula, Eq. (4).

3

The use of approximate timestamps has an implication,

proved in [23]: any scheduler based on approximate times-

tamps has a packet delay with respect to an ideal GPS

server larger than O(L). Fortunately the B-WFI bounds are

not affected: GFQ, S-KPS and our QFQ guarantee the same

O(L) B-WFIk as the optimal schedulers, differing only in

the multiplying constant, which is 1 with exact timestamps

and slightly larger otherwise (e.g., 3 in the case of QFQ,

see Sec. VI-B). Thus, approximate timestamps still give much

better guarantees than RR schedulers.

We should note that the data structures used in the various

schedulers differ largely, so that low asymptotic complexity

does not necessarily reflect in faster execution times, especially

with small number of flows. Also, there may be dependencies

on other parameters, (e.g., GFQ or S-KPS) or worst-case

behaviours significantly larger than average (e.g., LFVC).

III. SYSTEM MODEL AND DEFINITIONS

In this section we give some definitions commonly used in

the scheduling literature, and then present the exact WF2Q+

algorithm, which is used as a reference to describe QFQ. For

convenience, all symbols used in the paper are listed in Table I.

Most quantities are a function of time, but we omit the time

argument (t) when not ambiguous and clear from the context.

Symbol Meaning

N Total number of flows

L Maximum length of any packet in the system

B(t) The set of backlogged flows at time t

W (t1, t2) Total service delivered by the system in [t1, t2]
k Flow index

Lk Maximum length of packets in flow k

φk Weight of flow k

lk Length of the head packet in flow k; lk = 0 when
the flow is idle

Qk(t) Backlog of flow k at time t

W k(t1, t2) Service received by flow k in [t1, t2]

V (t) System virtual time, see Eq. (3)

V k(t) Virtual time of flow k, see Sec. III-A

Sk, F k Virtual start and finish times of flow k, see Eq. (2)

Ŝk, F̂ k Approximated Sk and F k for flow k, see Sec-
tion IV-2

i, j Group index (groups are defined in Sec. IV-1)

Si, Fi Virtual start and finish times of group i, see Eq. (6)

σi Slot size of group i (defined in Sec. IV-1, σi = 2i)
ER, EB, The four sets in which groups are partitioned
IR, IB

TABLE I
DEFINITIONS OF THE SYMBOLS USED IN THE PAPER.

We consider a system in which N packet flows (defined in

whatever meaningful way) share a common transmission link

serving one packet at a time. The link has a time-varying

rate. A system is called work conserving if the link is

used at full capacity whenever there are packets queued. A

scheduler sits between the flows and the link: arriving packets

are immediately enqueued, and the next packet to serve is

chosen and dequeued by the scheduler when the link is ready.

The interface of the scheduler to the rest of the system is made

of one packet enqueue() and one packet dequeue() function.

In our model, each flow k is assigned a fixed weight φk > 0.

Without losing generality, we assume that
∑N

k=1 φ
k ≤ 14.

A flow is defined backlogged/idle if it owns/does not own

packets not yet completely transmitted. We call B(t) the set

of flows backlogged at time t. Inside the system each flow

uses a FIFO queue to hold the flow’s own backlog.

We call head packet of a flow the packet at the head of the

queue, and lk its length; lk = 0 when a flow is idle. We say

that a flow is receiving service if one of its packets is being

transmitted. Both the amount of service W k(t1, t2) received

by a flow and the total amount of service W (t1, t2) delivered

by the system in the time interval [t1, t2] are measured in

number of bits transmitted during the interval.

A. WF2Q+

Here we outline the original WF2Q+ algorithm for a

variable-rate system (see [2], [18] for a complete description).

WF2Q+ is a packet scheduler that approximates, on a packet-

by-packet basis, the service provided by a work-conserving

ideal fluid system that delivers the following, almost perfect

bandwidth distribution over any time interval:

W k(t1, t2) ≥ φkW (t1, t2)− (1− φk)L (1)

The packet and the fluid system serve the same flows and

deliver the same total amount of work W (t) (systems with

these features are called corresponding in the literature). They

differ in that the fluid system may serve multiple packets in

parallel, whereas the packet system has to serve one packet at a

time, and is non preemptive. Because of these constraints, the

allocation of work to the individual flows may differ in the

two systems. WF2Q+ has optimal B-/T-WFI and O(logN)
complexity, which makes it of practical interest.

WF2Q+ operates as follows. Each time the link is ready,

the scheduler starts to serve, among the packets that have

already started5 in the ideal fluid system, the next one that

would be completed in the fluid system; ties are arbitrarily

broken. WF2Q+ is a work-conserving on-line algorithm, hence

it succeeds in finishing packets in the same order as the ideal

fluid system, except when the next packet to serve arrives after

one or more out-of-order packets have already started.

Virtual Times: The WF2Q+ policy is efficiently implemented

by considering, for each flow, a special flow virtual time

function V k(t) that grows as the normalized amount of service

(i.e., actual service received, divided by the flow’s weight)

received by the flow. In addition, when the flow turns from

idle to backlogged, V k(t) is set to the maximum between

its current value and the value of a further function, the

system virtual time V (t), defined below. For each flow k, the

value of V k(t) needs to be known (hence computed) only on

the following events: when the flow becomes backlogged, or

when its head packet completes transmission in the ideal fluid

4The implementation of QFQ does not rely on this assumption, and it
tracks the actual sum of weights as flows come and go, thus providing tighter
guarantees to the backlogged flows.

5This property, called “eligibility” is fundamental in providing small WFI.

4

system. The resulting values of V k(t), called flow’s virtual

start and finish time, Sk and F k, are used to timestamp the

flow itself, and are computed as:

Sk ←

{

max(V (tp), F
k) on newly backlogged flow

F k on packet dequeue

F k ← Sk + lk/φk

(2)

where tp is the time when a packet enqueue/dequeue occurs.

V (t) is the system virtual time function defined as follows

(assuming
∑

φk ≤ 1):

V (t2) ≡ max

(

V (t1) +W (t1, t2), min
k∈B(t2)

Sk

)

(3)

Note that V (t) is only computed at discrete times, so the

instantaneous link rate need not be known, and just W (t1, t2)
(the amount of data transferred in [t1, t2]) suffices. At system

start-up V (0) = 0, Sk ← 0 and F k ← 0.

Eligibility: Flow k is said to be eligible at time t if V (t) ≥ Sk.

This inequality guarantees that the head packet of the flow has

already started to be served in the ideal fluid system. Using

this definition, WF2Q+ can be implemented as follows: each

time the link is ready, the scheduler selects for transmission

the head packet of the eligible flow with the smallest virtual

finish time. Note that the second argument of the max operator

in Eq. (3) guarantees that the system is work-conserving.

The time complexity in WF2Q+ comes from three tasks:

i) computing V (t) from Eq. (3), which requires to track the

minimum Sk and has O(logN) cost; ii) selecting the next flow

to serve among the eligible ones, which requires tracking the

minimum F k among eligible flows and also has O(logN) cost

at each step; iii) updating eligible flows as V (t) grows. Any

change in V (t) can render O(N) flows eligible, and it takes

some clever data structure [19] to avoid an O(N) cost.

Fig. 1. QFQ at a glance. The figure represents all main data structures
used by the algorithm. The four groups sets on the top (see Section IV-3) are
stored in a bitmap by index number. The groups (rectangles on the bottom,
see Section IV-1) contain the bucket lists and individual flow queues.

IV. QUICK FAIR QUEUEING

In this section we describe QFQ. For ease of exposition, the

properties requiring long proofs are demonstrated separately in

Section V. The scheduler uses the data structure represented in

Fig. 1, and relies on three techniques (Flow Grouping, Times-

tamp Rounding, Group Sets) to perform all computations in

O(1) time.

1) Flow Grouping: Each flow k (one of the squares at the

bottom of Figure 1) is statically mapped into one of a finite

number of groups (the regions at the bottom of the figure).

The group i is chosen as

i =

⌈

log2
Lk

φk

⌉

(4)

where Lk is the maximum size of the packets for flow k.

Lk/φk is related to the service guarantees given to a flow, so

flows with similar guarantees are grouped together.

In practice, the number of distinct groups is less than 64

(32 groups suffice in many cases)6, so a set of groups can be

represented by a bitmap in a single machine word.

We define σi ≡ 2i (bits) as the slot size of the group. Since

σi−1 < Lk/φk ≤ σi, from Eq. (2) we have F k −Sk ≤ σi for

any flow k in group i.
2) Timestamp Rounding: Same as other timestamp-based

schedulers, QFQ labels flows with both exact and approximate

virtual times. The exact values (Sk and F k, Eq. (2)) are used

to provide guarantees7. The approximate values are defined as

Ŝk ←
⌊

Sk

σi

⌋

σi , F̂ k ← Ŝk + 2σi (5)

(where i is the group index) and are used to compute eligibility

and scheduling order. Note that Ŝk ≤ Sk < F k < F̂ k which

has useful implications on the runtime and service guarantees

of the algorithm.

For each group QFQ defines

Si = min
k∈groupi

Ŝk , Fi = Si + 2σi (6)

called the group’s virtual start and finish times.

Finally, QFQ replaces Sk with Ŝk in the definition of the

virtual time function:

V (t2) ≡ max

(

V (t1) +W (t1, t2), min
k∈B(t2)

Ŝk

)

(7)

It is easy to show that the min Ŝk in the equation can be

calculated as the minimum Si among the backlogged groups

in the system. Same as in Eq. (3), at system start-up V (0) = 0,

Si ← 0 and Fi ← 0.

Timestamp properties: Ŝk and F̂ k can only assume a limited

range of values around V (t) (Sk and F k have a similar

property called Globally Bounded Timestamp or GBT [17]).

We can prove (see Theorems 1 and 2 in Section V) that at

all times Ŝk < V (t) + σi. Furthermore, Ŝk is quantized and

can only assume 2 + ⌈L/σi⌉ distinct values (remember that

σi ≈ Lk/φ
k so the second term is bounded by the ratio

between the min and max packet size in the system). The small

number of possible values permits sorting within a group using

6This is trivially proven by substituting values in (4); as an example, Lk

between 64 bytes and 16 Kbytes, φk between 1 and 10−6) yield values
between 64 = 26 and 16 · 109 ≈ 234, or 29 groups.

7There is one case where the Sk for certain newly backlogged groups
can be shifted backwards to preserve the ordering of EB; this exception is
described and its correctness is proved in Lemma 4.

5

a constant-time bucket sort algorithm, implemented using a

bucket list (Fig. 2), a short array with as many buckets as

the number of distinct values for Ŝk. Each bucket contains

a FIFO list of all the flows with the same Ŝk and F̂ k. For

practical purposes, 64 buckets are largely sufficient, so once

again each bucket can be mapped to a bit in a machine word,

and a constant-time Find First bit Set instruction can be used

to locate the first non-empty bucket, which contains the next

flow to serve.

The use of Ŝk in Eq. (7) also saves another sorting step,

because, as we will see, the group sets defined in the next

section let us compute Eq. (7) in constant time.

Fig. 2. A representation of bucket lists. The number of buckets (gray, each

corresponding to a possible value of Ŝk), is fixed and independent of the
number of flows in the group.

3) Group Sets and their properties: QFQ partitions back-

logged groups into four distinct sets (top rows in Fig. 1). As

will be shown in Section IV-A, this reduces scheduling and

bookkeeping operations to simple set manipulations, in turn

performed with basic CPU instructions such as AND, OR and

FFS on single machine words.

The sets are called ER,EB, IR, and IB (from the initials

of Eligible, Ineligible, Ready, and Blocked), and the partition-

ing is done using two properties:

• Eligible: group i is Eligible at time t iff Si ≤ V (t). The

group is Ineligible otherwise.

• Blocked: independent of its own eligibility, a group i is

Blocked if there is some eligible group with higher index

and lower finish time. Otherwise the group is Ready.

The “blocked” property is used to partition groups so that

within each set X the group index reflects the ordering by

finish time: (∀j, i ∈ X, j > i ⇒ Fj > Fi). In particular, the

following properties hold:

1) IB∪IR is sorted by Si as a result of the GBT property.

In fact, if a group i is ineligible, any flow k in the group

has V (t) < Sk < V (t) + σi. Due to the rounding we

can only have Si = ⌈V (t)/σi⌉σi, and if i < j, we have

2σi ≤ σj hence Si ≤ Sj ;

2) IB ∪ IR is also sorted by Fi because of the sorting by

Si and the fact that σi’s are increasing with i;
3) ER is sorted by Fi, as proven in Theorem 4 (Section V);

4) EB is sorted by Fi, as proven in Theorem 5 (Section V).

Hence the group with the smallest timestamp in a set can be

located with an FFS instruction.

Managing sets: A group can enter any of the four sets when

it becomes backlogged or after it is served. After serving a

group, QFQ may need to move one or more other groups

from one set to another, but only on the paths

IB→ IR , IR→ ER , IB→ EB , EB→ ER

because the transitions of a group i from ineligible to eligible

(driven by the increase of V (t)), and from blocked to ready

(driven by the increase of the Fj of the group that was blocking

group i) are not reversible until group i itself is served.

Moving multiple groups from one set to another requires

comparing groups’ timestamps with a threshold, and affects all

groups above or below the threshold. Again this is done with

basic CPU instructions (AND, OR, NOT) without iterating

over the sets, because the ordering by finish time holds for

all the four sets, and IB ∪ IR is sorted by both Si and Fi.

So, once the index of the first matching group is known (see

Sec. IV-A3), all other matching groups are on the same side

of the set.

A. Quick Fair Queueing: The Algorithm

We are now ready to describe the details of the QFQ algorithm.

1 / / Enqueue the input pkt of the input flow

2 enqueue (in : pkt , in : f low) {
3 append (pkt , f low . queue) ; / / always enqueue

4 i f (f low . queue . head != p k t)

5 re turn ; / / Flow already backlogged, we are done.

6 / / Update flow Sk and Fk according to Eq. (2).

7 f low . S = max (f low . F , V) ;

8 f low . F = f low . S + p k t . l e n g t h / f low . we igh t ;

9 g = f low . group ; / / g is our group

10 i f (g . b u c k e t l i s t . headf low ==NULL | | f low . S<g . S) {
11 / / Group g is surely idle or not eligible. Remove from IR and IB if

12 / / there, and compute the new group Si and Fi from Eq. (5) and (6).

13 s e t [IR] &= ˜ (1 < < g . i n d e x) ;

14 s e t [IB] &= ˜ (1 < < g . i n d e x) ;

15 g . S = f low . S & ˜ (g . s l o t s i z e − 1) ;

16 g . F = g . S + 2∗g . s l o t s i z e ;

17 }
18 b u c k e t i n s e r t (flow , g) ;

19

20 / / If there is some backlogged group, at least one is

21 / / in ER; otherwise, make sure V ≥ g.S

22 i f (s e t [ER] == 0 && V < g . S)

23 V = g . S ;

24

25 / / compute new state for g, and insert in the proper set

26 s t a t e = c o m p u t e g r o u p s t a t e (g) ;

27 s e t [s t a t e] |= 1 < < g . i n d e x ;

28 }
29

30 / / Compute the group’s state, see Section IV-3

31 i n t c o m p u t e g r o u p s t a t e (in : g) {
32 / / First, eligibility test

33 s = (g . S <= V) ? ELIGIBLE : INELIGIBLE ;

34 / / Find lowest order group x > group.index. This is the group that

35 / / might block us. ffs from(d, i) returns the index of the first bit set

36 / / in d after position i

37 x = f f s f r o m (s e t [ER] , g . i n d e x) ;

38 s += (x != NO GROUP && groups [x] . F < g . F) ?

39 BLOCKED : READY;

40 re turn s ;

41 }

Fig. 3. The enqueue() function, called on packet arrivals, and com-

pute group state() that implements the tests for eligibility and readiness.

1) Packet Enqueue: Function enqueue(), shown in Fig. 3,

is called on the arrival of a packet.

As a first step, the packet is appended to the flow’s queue,

and nothing else needs to be done if the flow is already

backlogged. Otherwise, the flow’s timestamps are updated

(lines 7–8), and line 10 checks whether the group’s state needs

to be updated: this happens if the group was idle, or if the

new flow causes the group’s timestamp to decrease (in this

case the group was ineligible: line 7 implies V (t) ≤ Sk, the

6

second test in line 10 succeeds if Sk < Si, hence V (t) < Si).

The update is done by lines 11-18, which possibly remove

the group from the ineligible sets (lines 14–15), and update

the group’s timestamps (being the slot size 2i, the start time

calculation only needs to clear the last i bits of Sk, line 16).

Once the group’s timestamps are set, a constant-time bucket

insert (line 19) sorts the flow with respect to the other

flows in the group. At this point, if needed, V (t) is updated

according to Eq. (2). Finally, function compute group state()

(Sec. IV-A3/Fig. 5) computes the new state of the group

(which may have changed because of the new values of Si,

Fi and V (t)), and line 28 puts the group in its new set.

Note that an enqueue does not move other groups across

sets: their eligibility remains the same (V (t) changes only if

all other groups are idle); blocked/ready states also remain

unchanged, though for less intuitive reasons8.

2) Packet Dequeue: Function dequeue() in Fig. 4 is called

to return the next packet to send.

The packet selection (lines 2–8) is straightforward. If there

are queued flows, at least one flow is eligible, so ER is not

empty: a first FFS instruction (line 6) picks the group with

the lowest index in ER, then another FFS (line 7) is used

to locate the first flow in the bucket list, and the head packet

from that flow is the next packet to serve.

Before returning, the function updates the scheduler’s data

structures in preparation for further work. The flow’s times-

tamps are updated, and the flow is possibly reinserted in the

bucket list (lines 10–16). Virtual time is increased in line 19, to

reflect the service of the packet selected for transmission. Next

(lines 21–28), the group’s timestamps and state are updated.

If the group has increased its finish time or it has become

idle (lines 32–36), it is moved to the new set, and function

unblock groups() described in Sec. IV-A3 possibly unblocks

other groups.

Finally, lines 38–45 make sure that at least one backlogged

group is eligible by bumping up V if necessary, and moving

groups between sets using function make eligible() which will

be discussed next.

3) Support Functions: Fig. 5 documents the remaining

support functions, mostly used in the dequeue() code.

Function move groups() uses simple bit operations to move

groups with indexes in mask from set src to set dest.

Function make eligible() determines which groups become

eligible as V (t) grows after serving a flow. The properties

of rounded timestamps are used to implement the check in

constant time. The algorithm is explained with the help of

Fig. 6, which gives a graphical representation of the possible

values of Si’s and V (t), and the binary representations of

V (t) (the vertical strings of binary digits). Since slot sizes

are powers of two (σi = 2i), the binary representation of

8If the new packet belongs to an already backlogged flow, its group does not
change its finish time so the readiness of others cannot be affected. Otherwise
the group j containing flow k just became backlogged, or its finish time
decreased. However Sk ≥ V (t), hence Fj > ⌊V (t)/σj ⌋σj + 2σj . Any
Ready group i < j will have Fi < ⌊V (t)/σi⌋σi +3σi (one σi comes from
the upper bound on Sk , the other two come from the definition of Fi =
Si+2σi). Hence Fi ≤ V (t)+3σi . By definition j > i =⇒ σj ≥ 2σi, so
Fj ≥ Fi and the newly backlogged group j cannot block a previously Ready
group, even in the worst case (largest possible Fi, smallest possible Fj).

1 p a c k e t dequeue () { / / Return the next packet to serve

2 i f (s e t [ER] == 0)

3 re turn NULL;

4 / / Dequeue the first packet of the first flow of the group

5 / / in ER with the smallest index

6 g = groups [f f s (s e t [ER])] ;

7 f low = bucke t head remove (g . b u c k e t l i s t) ;

8 p k t = head remove (f low . queue) ;

9

10 / / Update flow timestamps according to Eq. (2)

11 f low . S = f low . F ;

12 p = f low . queue . head ; / / next packet in the queue

13 i f (p != NULL) {
14 f low . F = f low . S + p . l e n g t h / f low . we igh t ;

15 b u c k e t i n s e r t (flow , g) ;

16 }
17

18 old V = V; / / Need the old value in make eligible()

19 V += p k t . l e n g t h ; / / Account for packet just served

20

21 old F = g . F ; / / Save for later use

22 i f (g . b u c k e t l i s t . headf low == NULL) {
23 s t a t e = IDLE ; / / F not significant now

24 } e l s e {
25 g . S = g . b u c k e t l i s t . headf low . S ;

26 g . F = g . b u c k e t l i s t . headf low . F ;

27 s t a t e = c o m p u t e g r o u p s t a t e (g) ;

28 }
29

30 / / If g becomes IDLE, or if F has grown, may need to

31 / / unblock other groups and move g to its new set

32 i f (s t a t e == IDLE | | g . F > old F) {
33 s e t [ER] &= ˜ (1 < < g . i n d e x) ;

34 s e t [s t a t e] |= 1 < < g . i n d e x ;

35 u n b l o c k g r o u p s (g . index , old F) ;

36 }
37

38 x = s e t [IR] | s e t [IB] ; / / all ineligible groups

39 i f (x != 0) { / / Someone is ineligible, may need to

40 / / bump V up according to Eq. (3)

41 i f (s e t [ER] == 0)

42 V = max (V, g roups [f f s (x)] . S) ;

43 / / Move newly eligible groups from IR/IB to ER/EB

44 m a k e e l i g i b l e (old V , V) ;

45 }
46 re turn p k t ;

47 }

Fig. 4. The dequeue() function, described in Section IV-A2.

the timestamps of the i-th group’s ends with i − 1 zeros; in

any given slot belonging to group i, the value of the i-th bit

is constant during the whole slot. Whenever the i-th bit of

V (t) changes, the virtual time enters a new slot of size 2i.
As a consequence, on each V (t) update, the highest bit j that

changes in V (t) indicates that all backlogged groups Gi, i ≤ j
are now eligible.

This is exactly the algorithm implemented by function

make eligible(): it computes the index j using a XOR followed

by a Find Last Set (FLS) operation; then computes the binary

mask of all indexes i ≤ j, and calls function move groups to

move groups whose index is in the mask from IR to ER and

from IB to EB.

Function unblock groups() updates the set of blocked

groups. When the group j under service increases its finish

time or becomes idle, some groups i < j blocked by j might

become ready, i.e., do not violate anymore the ordering of

ER ∪ IR. Theorem 6 in Section V proves which groups can

be unblocked; lines 21–22 verify the preconditions, and lines

25–27 move groups to ER and IR as needed.

7

1 / / Move the groups in mask from the src to the dst set

2 move groups (in : mask , in : s rc , in : d e s t) {
3 s e t [d e s t] |= (s e t [s r c] & mask) ;

4 s e t [s r c] &= ˜ (s e t [s r c] & mask) ;

5 }
6

7 / / Move from IR/IB to ER/EB all groups that become eligible as V (t)
8 / / grows from V1 to V2. This uses the logic described in Fig. 6

9 m a k e e l i g i b l e (in : V1 , in : V2) {
10 / / compute the highest bit changed in V(t) using XOR

11 i = f l s (V1 ˆ V2) ;

12 / / mask contains all groups with index j ≤ i

13 mask = (1 < < (i +1)) − 1 ;

14 move groups (mask , IR , ER) ;

15 move groups (mask , IB , EB) ;

16 }
17

18 / / Unblock groups after serving group i with F=old F

19 u n b l o c k g r o u p s (in : i , in : o ld F) {
20 x = f f s (s e t [ER])] ;

21 i f (x == NO GROUP | | groups [x] . F > old F) {
22 / / Unblock all the lower order groups (Theorem 6)

23 / / mask contains all groups with index j < i

24 mask = (1 < < i) − 1 ;

25 move groups (mask , EB , ER) ;

26 move groups (mask , IB , IR) ;

27 }
28 }

Fig. 5. Functions to manage group sets after a flow has been served (see
Sec. IV-A2).

1 0

1 0

0 0

0 0

0

01

1

1 1

1

11 0

old_V new_V

Group

index

V(t)

0 1

1

0 0

0

1

11 1 1 1 1

0

0

0

1 1 0

1 0

0

may move to eligible

Fig. 6. Tracking group eligibility. On the transition of V from old V to
new V; the highest bit that flips across the transition is the second one, so
groups zero and one are the candidates to become eligible (see Sec. IV-A3).

B. Time and Space Complexity

From the listings it is clear that QFQ has O(1) time com-

plexity on packet arrivals and departures: the algorithm has

no loops, and all operations, including insertion in the bucket

list and finding the minimum timestamps, require constant

time. All arithmetic operations can be done using fixed point

computations, including the division by the flow weight (for

efficiency, divisions are implemented as multiplications by the

inverse of the weight).

Note that while the algorithm has been described assuming

φ =
∑

φk ≤ 1, the actual implementation supports arbitrary

values for φ, replacing line 19 of the dequeue function with

V += pkt.length / φ. Changes in φ are tracked in real time

as flows come and go: new flow increasing φ immediately

(this does not violate guarantees), while dead flows are expired

lazily, using the technique shown in [22].

In terms of space, the per-flow overhead is approximately 24

bytes (two timestamps, weight, group index and one pointer).

Each group contains a variable number of buckets (32 in the

worst case, requiring one pointer each), plus two timestamps

and a bitmap. Finally, the main data structure contains five

bitmaps, the sum of weights and a timestamp. Overall, even a

large configuration will require 4 KBytes of memory to hold

the entire state of the scheduler.

QFQ has very good memory locality. On each enqueue()

or dequeue() request, the algorithm only touches the internal

memory (the 4 KB mentioned above) and the descriptor of the

single flow involved in the operation. This is very beneficial

both for software and hardware implementations.

V. PROOFS OF THE PROPERTIES USED IN QFQ

In this section we prove the properties used in Sec. IV.

The proofs are complete but slightly condensed due to space

constraints. All symbols are defined in Table I, and quantities

(V (t), Sk(t), ...) are computed as described in the QFQ

algorithm.

Hereafter we explicitly indicate the time at which any

timestamp is computed to avoid ambiguity. Given a generic

function of time f(t), we define f(t+1) ≡ limt→t
+

1

f(t). For

notational convenience, we avoid writing f(t+c) if f(t) is

continuous at time tc. To further simplify the notation, if the

function is discontinuous at a time instant td, we assume,

without losing generality, that f(td) ≡ limt→t
−

d

f(t), i.e., that

the function is left-continuous.

We define the following two notations for convenience:

⌊x⌋σi
≡ ⌊

x

σi

⌋σi and ⌈x⌉σi
≡ ⌈

x

σi

⌉σi

For any positive quantity y < x+ σi, we have

⌊y⌋σi
≤ ⌈x⌉σi

(8)

In fact, x can be written as x = nσi + δ, with 0 ≤ δ < σi. If

δ = 0 then y < (n+ 1)σ1 ⇒ ⌊y⌋σi
≤ nσi, ⌈x⌉σi

= nσi, and

the thesis holds; if δ > 0 then ⌊y⌋σi
≤ (n + 1)σi, ⌈x⌉σi

=
(n+ 1)σi, and the thesis holds too.

A. Group GBT under QFQ

We start by proving per-group upper bounds for Si(t)−V (t)
(Theorem 1) and for V (t) − Fi(t) (Theorem 2, supported by

the two long Lemmas 1 and 2). The two bounds represent

a group-based variant of the Globally Bounded Timestamp

(GBT) property, normally defined for the flow timestamps

in an exact virtual-time-based scheduler. We will use these

bounds to prove both the properties of the data structure and

the B/T-WFI of QFQ. Lemmas 1 and 2 are adapted versions

of the ones in [9], repeated here for convenience and with

permission from the author.

Theorem 1: Upper bound for Si(t)− V (t).
For any backlogged group i and ∀t

Si(t) ≤

⌈

V (t)

σi

⌉

σi = ⌈V (t)⌉σi
(9)

Proof: By definition (5), at any time t and for any group

i, Si(t) is an integer multiple of σi and, for any backlogged

flow k of the group, Si(t) ≤ Ŝk(t) = ⌊Sk(t)⌋σi
. It follows

that, if Sk(t) < V (t) + 2σi, then (9) trivially holds. Hence,

to prove (9) we actually prove the latter inequality, i.e., that

Sk(t) < V (t) + 2σi, and to prove it we consider only a

8

generic time instant t1 at which a generic packet for flow

k is enqueued/dequeued, as this is the only event upon which

Sk(t) may increase.

According to (2), either Sk(t+1) = V (t1), in which case the

packet is enqueued and the thesis trivially holds, or Sk(t+1) =
F k(t1). In this case flow k must have had a packet previously

dequeued at time tp < t1.

When the packet was dequeued at tp flow k was certainly el-

igible, and V (t) is immediately incremented after the dequeue

at tp, so we have F k(t1) = Sk(t+p) = Sk(tp) + lk(tp)/φ
k ≤

V (tp)+σi+ lk(tp)/φ
k ≤ V (tp)+ 2σi < V (t+p)+ 2σi, which

proves the thesis.

Lemma 1: Let I(t) = {k : k ∈ B(t), Sk(t) ≥ V (t)} be a

subset of flows. Given a constant V ′, ∀t : V (t) ≤ V ′ we have:
∑

k∈I(t)

(

lk(t) + φk[V ′ − F k(t)]
)

≤ V ′ − V (t) (10)

where lk(t) is the size of the first packet in the queue for flow

k at time t.
Proof: By definition, lk(t) = φk[F k(t) − Sk(t)]. Thus,

for flows in set I(t) we have lk(t) ≤ φk[F k(t) − V (t)].
Therefore: 0 ≥

∑

k∈I(t)

{

lk(t) + φk[V (t)− F k(t)]
}

=
∑

k∈I(t)

{

lk(t) + φk[V (t)− V ′] + φk[V ′ − F k(t)]
}

.

This implies:
∑

k∈I(t)

{

lk(t) + φk[V ′ − F k(t)]
}

≤
∑

k∈I(t) φ
k[V ′ − V (t)] ≤ V ′ − V (t), where the last

passage uses
∑

k∈I φ
k ≤ 1.

Lemma 2: Let X(t,M) ≡ {k : F̂ k(t) ≤ M} be a set of

flows. Given a constant V ′, we have that ∀t : L+V ′ ≥ V (t):
∑

k∈X(t,V ′)

(

lk(t) + φk[V ′ − F k(t)]
)

≤ L+ V ′ − V (t) (11)

Proof: The proof is by induction over those events that

change the terms in (11): packet enqueues for idle flows, packet

dequeues and virtual time jumps. The base case where X
is empty is true by assumption. For the inductive proof, we

assume (11) to hold at some time t1.

Packet enqueue for an idle flow: say a packet of size l1
of the idle flow k arrives at time t1. V (t) does not change on

packet arrivals except for virtual time jumps, that are dealt with

later. If after the enqueue of the new packet k /∈ X(t+1 , V
′),

i.e., F̂ k(t+1) > V ′, we must consider two sub-cases. First, if

k /∈ X(t1, V
′) nothing changes. Second, if k ∈ X(t1, V

′)
the positive component φk[V ′ − F k(t1)] is removed from the

sum. In both sub-cases the lemma holds. The remaining case

is if k ∈ X(t+1 , V
′). Since F̂ k(t+1) > F̂ k(t1), this implies

k ∈ X(t1, V
′). In this case lk(t) is incremented by l1, but

F k(t) is incremented by l1/φ
k, so the left hand side of (11)

remains unchanged and the lemma holds.

Virtual time jump: after a virtual time jump, all backlogged

flows have Sk(t+1) ≥ Ŝk(t+1) ≥ V (t+1). With regard to the idle

flows, we assume that their virtual start and finish times are

pushed to V (t+1). By doing so we do not lose generality, as

the virtual start times of these flows will be lower-bounded

by V (t) when they become backlogged (again). Besides, it is

easy to see that pushing up their virtual finish times may only

let the left side of (11) decrease. In the end Sk(t+1) ≥ V (t+1)
for all flows and, if V ′ ≥ V (t+1) then Lemma 1 applies and

the lemma holds. For other V ′ in [V (t+1) − L, V (t+1)[, the

additional L term in (11) absorbs any decrement on the right

hand side. Therefore, the lemma holds.

Packet dequeue: flow k receives service at time t1 for its

head packet of size lk(t1). We have to distinguish two cases,

depending on V ′ and F̂ k(t1).
Case 1: V ′ ≥ F̂ k(t1). V (t) is incremented, and hence the

right side of (11) decreases, exactly by lk(t1). With regard

to the left side, the variation of lk(t) can be seen as the

result of first decreasing by lk(t1), which balances the above

decrement of V (t), and then increasing by lk(t+1), which is

in turn balanced by incrementing F k(t) by
lk(t+

1
)

φk . Hence the

lemma holds for this case.

Case 2: V ′ < F̂ k(t1). In this case all flows h ∈ X(t1, V
′)

have F̂h(t1) < F̂ k(t1), so they must have been ineligible

according to their rounded start time, otherwise the current

flow k would have not been chosen. Therefore, V (t1) <
Ŝh(t1) ≤ Sh(t1) for all flows in X(t1, V

′). Lemma 1 applies

then for all V ′ ≥ V (t1), i.e.,

∑

k∈X(t+
1
,V ′)

(

lk(t1) + φk[V ′ − F k(t1)]
)

≤ V ′ − V (t1) (12)

Because V (t+1) = V (t1) + lk and we assume L + V ′ ≥
V (t+1) after service, we only need to consider V ′ with L +
V ′ ≥ V (t+1) + lk before service. Therefore

V ′−V (t1) ≤ (L− lk)+V ′− (V (t+1)− lk) = L+V ′−V (t+1)
(13)

and the lemma holds after service also in this case, thus

completing the proof.

Theorem 2: Upper bound for V (t)− Fi(t)
For any backlogged group i

V (t) ≤ Fi(t) + L (14)

Proof: To prove the thesis we will actually prove, by

contradiction, the more general inequality V (t) ≤ F̂ k(t) + L
for a generic flow k of group i. The only event that could lead

to a violation of the assumption is serving a packet. Assume

that at t = t1 : V (t1) = V1 the lemma holds. A packet

p with rounded finish time F̂1 and length lp is served and

afterwards at time t2 : V (t2) = V2, there is a packet q with

finish time F2, such that F̂2 + L < V2. Denote with Ŝ1 and

Ŝ2 the corresponding start times. We need to distinguish three

cases.

Case 1: Packet q is eligible at time t1 according to its

rounded start time. Then, F̂2 ≥ F̂1 (both packets were eligible

at V1 and p was chosen). Applying Lemma 2 with t = t1 and

V ′ = F̂2 results in
∑

k∈X(t1,F̂2)

lk(t1)+
∑

k∈X(t1,F̂2)

(F̂2−F
k(t1))φ

k ≤ L+F̂2−V (t1)

(15)

Because F k(t) ≤ F̂ k(t), the second term on the left side of

the inequality is non-negative and therefore V1 + lp ≤ V1 +
∑

k:F̂k(t)≤F̂2
lk(t) ≤ V1 + L+ F̂2 − V1 ≤ F̂2 + L.

Case 2: Packet q is not eligible at V1 according to its

rounded start time, but becomes eligible between V1 and V2.

9

Then, Ŝ2 ≥ V1. Virtual time advances by at most L and

therefore: F̂2 ≥ Ŝ2 ≥ V1 ≥ V2 − L.

Case 3: Packet q is not eligible according to its rounded start

time after service to p, therefore V2 is reached by a virtual time

jump before q can be served. In this case: F̂2 ≥ Ŝ2 ≥ V2 ≥
V2 − L. This concludes the proof.

B. Proofs of the data structure properties

We can now prove the ordering properties of group sets,

considering the two events that can change the set member-

ship: packet enqueue and packet dequeue. We start by proving

the following theorem, which bounds the number of possible

timestamps within a group.

Theorem 3: At all times, only the first 2+⌈ L
σi
⌉ consecutive

slots beginning from the head slot of a group may be non

empty.

Proof: Consider a generic flow k belonging to a group i.
A new virtual start time may be assigned to the flow (only) as

a consequence of the enqueueing/dequeueing of a new packet

pk,l at a time instant tp. As in the proof of Theorem 1, from (2)

Sk(t+p) may be equal to either (a) V (tp), or (b) F k(tp), where

we assume F k(tp) = 0 if pk,l is the first packet of the flow

to be enqueued/dequeued.

In the first case, according to (14), Sk(t+p) = V (tp) ≤
Fi(tp)+L ≤ Si(tp)+2σi+L ≤ Si(tp)+2σi+⌈

L
σi
⌉σi. In the

second case, neglecting the trivial sub-case F k(sk,l−1+) = 0,

we can consider that flow k had to be a head flow when pk,l−1

was served. Hence, according to (5), Sk(tp) < Si(tp) + σi.

From (2), this implies Sk(t+p) = F k(tp) < Si(tp) + 2σi.

Considering both cases, it follows that, ∀t Sk(t)− Si(t) <
(2 + ⌈ L

σi
⌉)σi, which proves the thesis.

Using the following lemma, we want now to prove that ER

is ordered by virtual finish times.

Lemma 3: Let t be the time instant at which a previously

idle group i becomes backlogged, or at which the group,

previously ineligible, becomes eligible, or finally at which

the virtual finish time of the group decreases. We have that

Fh(t) ≤ Fi(t
+
) for any backlogged group h with h < i.

Proof: For Fi(t) to decrease, Si(t) must decrease as well.

According to the enqueue() and dequeue(), this can happen

only in consequence of the enqueueing of a packet of an empty

flow of the group. As this is exactly the same event that may

cause a group to become backlogged, then, from (2) we have

Si(t
+
) ≥ ⌊V (t)⌋σi

both if the group becomes backlogged and

if Fi(t) decreases. Substituting this inequality, which finally

holds also if the group becomes eligible at time t, and (9) in

the following difference we get:

Fh(t)− Fi(t
+
) =

Sh(t) + 2σh − Si(t
+
)− 2σi ≤

⌈V (t)⌉σh
− ⌊V (t)⌋σi

+ 2σh − 2σi ≤
⌈V (t)⌉σi

− ⌊V (t)⌋σi
+ 2σh − 2σi ≤ 0

(16)

where ⌈V (t)⌉σh
≤ ⌈V (t)⌉σi

and the last inequality follows

from that, as i > h, σi ≥ 2σh.

The following theorem guarantees that ER is always or-

dered by virtual finish times.

Theorem 4: Set ER is ordered by group virtual finish time.

Proof: We will prove the thesis by induction. In the base

case ER = ∅ the thesis trivially holds. The ordering of ER

may change only when one or more groups enter the set. This

can happen as a consequence of 1) a group entering ER as

it becomes backlogged, 2) one or more groups moving from

IR to ER, 3) one or more groups moving from EB to ER.

Let i be a group entering ER at time t1 for one of the above

three reasons, and let the thesis hold before time t1.

In the first case, thanks to Lemma 3 Fi(t
+
1) is not lower

than the virtual finish times of the groups in ER with lower

index. By definition of ER, Fi(t
+
1) is also not higher than the

virtual finish times of the groups in ER with higher index.

In the second case, given a group h ∈ ER with h < i,
Si(t1) ≥ Sh(t1) because either group h was already in ER

before time t1, or group h belonged to IR, which is ordered

by virtual start times according to [Sec.IV-3, item 2]. This

implies Fi(t1) ≥ Fh(t1) because σi ≥ 2σh. By definition of

IR, Fi(t1) is also not higher than the virtual finish times of

the groups in ER with higher index.

In the third case, since group i is not blocked any more,

Fi(t1) is not higher than the virtual finish times of the groups

in ER with higher index. With regard to the groups with lower

index than i, for group i to be blocked before time t1 there had

to be a group b ∈ ER with b > i and Fb(t1) < Fi(t1). Since

we assume that ER is ordered by virtual finish time before

time t1, then Fb(t1), and hence Fi(t1) is not lower than the

virtual finish times of all the lower index groups in ER.

To prove that EB enjoys the same order property as ER,

we need first a further lemma. The validity of the lemma

depends on the timestamp back-shifting performed by QFQ

when inserting a newly backlogged group into EB. Hence

this is the right place to explain in detail this operation.

When an idle group i becomes blocked after enqueueing a

packet of a flow k at time tp, the timestamps of flow k are

not updated using the following variant of (2):

Sk(t+p)← max
[

min(V (tp), Fb(tp)), F
k(tp)

]

F k(t+p)← Sk + lk(t+p)/φ
k (17)

where b is the lowest order group in ER such that b > i.
Basically, with respect to the exact formula, Fb(tp) is used

instead of V (tp) if V (tp) > Fb(tp). This is done because

otherwise the ordering by virtual finish time in EB may be

broken. It would be easy to show that this would happen if an

idle group becomes blocked when V (t) is too higher than the

virtual finish time of some other blocked group h < i.
With regard to worst-case service guarantees, in case

V (tp) > Fb(tp) in (17), group i just benefits from the

back-shifting, whereas the guarantees of the other flows are

unaffected. To prove it, consider that the guarantees provided

to any flow do not depend on the actual arrival time of the

packets of the other flows. Hence one can still “move” a pair of

timestamps backwards, provided that this does not lead to an

inconsistent schedule, i.e., provided that the resulting worst-

case schedule for all the flows is the same as if the packet

had actually arrived at a time instant such that the would have

got exactly those timestamps without using any back-shifting.

This is what happens using (17), for the following reason.

Should the packet that lets group i become backlogged have

10

arrived at a time instant tp ≤ tp at which V (tp) = Fb(tp),
group i would have however got a virtual finish time higher

than Fb(tp). Hence group i should not have been served before

group b, exactly as it happens in the schedule resulting from

timestamping group i with (17) at time tp.

We can now introduce the intermediate lemma we need to

finally prove the ordering in EB.

Lemma 4: If a pair of groups h and i with h < i are blocked

at a generic time instant t2, then Sh(t2) ≤ Fi(t2).
Proof: We consider two alternative cases. The first is that

Sh(t2) has been last updated at a time instant t1 ≤ t2 using

(17). The second is that, according to (2) and (5) there are at

least one head flow k of group h and a time instant t1 ≤ t2
such that Sh(t2) = ⌊F k(t1)⌋σh

.

In the first case we have Sh(t2) ≤ Fb(t1), where b is the

lowest order group in ER such that b > h. We can consider

two sub-cases. First, group i is already backlogged and eligible

at time t1. It follows that, if i ≥ b then Fi(t1) ≥ Fb(t1).
Otherwise, from the definition of b, group i is necessarily

blocked, and Fi(t1) > Fb(t1) must hold again for group b
not to be blocked. In the end, regardless of whether group i is

ready or blocked, Fi(t2) ≥ Fi(t1) > Fb(t1) = Sh(t2) and the

thesis holds. In the other sub-case, i.e., group i is not ready

and eligible at time t1, thanks to Lemma 3 group i cannot

happen to have a virtual finish time lower than Fh(t1) during

(t1, t2]. Hence Fi(t2) ≥ Fh(t1) = Fh(t2) > Sh(t2).
In the other case, i.e., Sh(t2) = ⌊F k(t1)⌋σh

, we prove the

thesis by contradiction. Suppose that Sh(t2) > Fi(t2). Flow k
must have necessarily been served with F k(t0) = F k(t1) at

some time t0 ≤ t1. In addition, for Sh(t2) > Fi(t2) to hold,

F k(t1) > Fi(t2) and hence F k(t0) > Fi(t2) should hold as

well. As flow k had to be a head flow at time t0, it would

follow that

Fh(t0) ≥ F k(t0) > Fi(t2) (18)

We consider two cases.

First, group i is backlogged at time t0. If Fi(t0) < Fh(t0),
then Si(t0) = Fi(t0)−2σi < Fh(t0)−2σi < Sh(t0), because

σi > σh. Hence, both group h and i would be eligible,

and group h could not be served at time t0. In follows that

Fi(t0) ≥ Fh(t0) should hold. This inequality and (18) would

imply Fi(t0) > Fi(t2). Should not Fi(t) decrease during

[t0, t2], the absurd Fi(t2) > Fi(t2) would follow. But, from

enqueue() and dequeue() it follows that the only event that

can let Fi(t) decrease is the enqueueing of a packet of an idle

flow of group i that causes Si(t) to decrease (lines 12-18 of

enqueue). Let Fi,min be the minimum value that Fi(t) may

assume in consequence of this event.

Since ∀t ∈ [t0, t2] V (t) ≥ Sh(t0), according to (2), (5)

and (18), Fi,min ≥ ⌊Sh(t0)⌋σi
+ 2σi ≥ Sh(t0)− σh + 2σi =

Fh(t0) − 3σh + 2σi > Fh(t0) > Fi(t2), which again would

imply the absurd Fi(t2) > Fi(t2).
The second case is that group i is not backlogged at time

t0. As the event that would let the group become backlogged

after time t0 is the same that might have let Fi(t) decrease in

the other case, then, using the same arguments as above, we

would get the same absurd.

In the end, Sh(t2) ≤ Fi(t2) must hold.

The following theorem guarantees that EB is always or-

dered by virtual finish time (hence, as previously proven for

ER this order is never broken during QFQ operations).

Theorem 5: Set EB is ordered by group virtual finish time.

Proof: We will prove the thesis by induction. In the base

case EB = ∅ the thesis trivially holds. The only event upon

which the the ordering of EB may change is when one or more

groups enters the set. The three events that may cause a group

to become blocked are 1) the enqueueing/dequeueing of a

packet of a flow of an idle group j > i, which lets group j get a

lower virtual finish time than group i (groups with lower order

than i can never block group i); 2) the enqueueing/dequeueing

of a packet of a flow of group i itself, which lets the virtual

finish time of group i become higher than the virtual finish of

some higher order group; 3) the growth of V (t), which causes

one or more groups to move from IB to EB.

With regard to the first event, it is worth noting that group j
can cause group i to become blocked only if group j becomes

backlogged or if Fj(t) decreases. Let t1 be the time instant

at which one of these two events occurs and such that EB is

ordered up to time t1. Thanks to Lemma 3, Fi(t1) ≤ Fj(t
+
1)

and hence the event cannot let group i become blocked.

Suppose now that, at time t1, group i enters EB as a

consequence of either a packet of a flow of the group being

enqueued/dequeued or the growth of V (t). We will prove that,

given two any blocked groups h < i and j > i, Fh(t1) ≤
Fi(t

+
1) and Fi(t

+
1) ≤ Fj(t1) hold (where Fi(t

+
1) = Fi(t1) in

case group i enters EB from IB).

With regard to a blocked group h < i, if group i enters EB

as a consequence of a packet enqueue/dequeue, then, from

Lemma 4 and the fact that, as Fi(t) is an integer multiple of

σi, Fi(t
+
1) ≥ Fi(t1) + σi, we have

Fi(t
+
1)− Fh(t1) ≥

Fi(t1) + σi − Sh(t1)− 2σh ≥ 0
(19)

where the last inequality follows from σi ≥ 2σh. On the other

hand, if group i enters EB from IB, then Si(t1) ≥ Sh(t1)
because either group h was already eligible before time t1, or

group h belonged to IB, which is ordered by virtual start time

according to [Sec.IV-3, item 2]. This implies Fi(t1) ≥ Fh(t1)
because σi ≥ 2σh.

With regard to a blocked group j > i, let b > j > i be

the highest order group that is blocking group j at time t.
Independently of the reason why group i enters EB, from

Lemma 4 we have

Si(t
+
) ≤ Fb(t) ≤ Fj(t)− σj (20)

where the last inequality follows from Fb(t) < Fj(t) and the

fact that both Fj(t) and Fb(t) are integer multiples of σj .

Using (20) we have: Fi(t
+
) = Si(t

+
) + 2σi ≤ Fj(t)− σj +

2σi, i.e.,

Fi(t
+
) ≤ Fj(t) (21)

because, since j > i, σj ≥ 2σi.

Finally, we can prove the theorem that allows QFQ to

quickly choose the groups to move from EB/IB to ER/IR.

11

Theorem 6: Group unblocking Let i be the group that

would be served on the next packet dequeue at time t, and

assume that there is no group j : j > i, Fj(t) = Fi(t); in this

case, if group i is actually served and Fi(t
+
) > Fi(t) or if

group i becomes idle at time t, then all and only the groups

in EB/IB and with order lower than i must be moved into

ER/IR.

Proof: To prove the thesis, we first prove that group i is

the only group that can block a group h < i. The proof is

by contradiction. Suppose for a moment that a group j > i
blocks group h. Since Fi(t) < Fj(t) must hold for group i not

to be blocked, and both Fi(t) and Fj(t) are integer multiples

of σi, then Fi(t) ≤ Fj(t)−σi. Combining this inequality with

Lemma 4, we get Sh(t) ≤ Fj(t)− σi and hence, considering

that σi ≥ 2σh, Fh(t) = Sh(t) + 2σh ≤ Fj(t) − σi + 2σh ≤
Fj(t). This contradicts the fact that group j blocks group h.

As a consequence, if Fi(t) increases, then, thanks to (19)

and (21), all and only the blocked groups h < i become ready.

The same happens if group i becomes idle as a consequence

of a packet dequeue.

VI. SERVICE GUARANTEES

Service guarantees are an important parameter of any schedul-

ing algorithm. In this Section we compute various service met-

rics for QFQ: in particular, we will derive two bit guarantees

– the B-WFI and relative fairness, and one time guarantee –

the T-WFI.

A. Bit Guarantees

The B-WFIk guaranteed to a flow k is defined as:9

B-WFIk ≡ max
[t1,t2]

(

φkW (t1, t2)−W k(t1, t2)
)

(22)

where [t1, t2] is any time interval during which the flow

is continuously backlogged; φkW (t1, t2) is the minimum

amount of service the flow should have received according to

its share of the link bandwidth; and W k(t1, t2) is the actual

amount of service provided by the scheduler to the flow.

Theorem 7: B-WFI for QFQ For a flow k belonging to

group i QFQ guarantees

B-WFIk = 3φkσi + 2φkL (23)

IMPORTANT NOTE: flow k belongs to group i, so φkσi

varies between Lk and 2Lk and the B-WFIk is always bounded

by a small multiple of the packet size, same as for other near-

optimal schedulers. In addition, Theorem 1, as well as the

theorems and lemmas it depends on, are proven without ever

using the link rate. Hence this theorem holds also for time-

varying link rates.

Proof: In this proof we express timestamps (V (t), F k(t),
etc.) as functions of time to avoid ambiguities. We consider

two cases. The first one is when flow k is eligible at time t1.

In this case, as for the virtual time V k(t) of flow k in the real

system, consider that V k(t1) ≤ F k(t1), and V k(t2) ≥ Sk(t2)
trivially hold. In addition, ∀t, V (t) ≤ Fi(t) + L as proven in

9This definition is slightly more general than the original one in [2], where
t2 was constrained to the completion time of a packet.

Theorem 2, then Si(t2) = Fi(t2) − 2σi > V (t2) − L − 2σi.

Hence we have :

W k(t1, t2) = φkV k(t1, t2) ≥
φk(Sk(t2)− F k(t1)) >

φk(Si(t2)− (Sk(t1) + σi)) >
φk(V (t2)− L− 2σi − (V (t1) + σi)) =
φk(V (t2)− V (t1))− φkL− 3φkσi >

φkW (t1, t2)− 2φkL− 3φkσi

(24)

The last inequality follows from the fact that, because of the

immediate increment of V (t) as a packet is dequeued (see

updateV()), V (t2)− V (t1) ≥W (t1, t2)− L.

The other case is when flow k is not eligible at time t1.

This implies that V k(t1) is exactly equal to Sk(t1). Hence,

considering that Sk(t1) ≤ V (t1) + σi, we have:

W k(t1, t2) ≥
φk(Sk(t2)− Sk(t1)) ≥
φk(Si(t2)− Sk(t1)) >

φk(V (t2)− L− 2σi − (V (t1) + σi) >
φkW (t1, t2)− 2φkL− 3φkσi

(25)

Comparison with other schedulers: in a perfectly fair ideal

fluid system such as the GPS server, B-WFIk = 0 (see [2]),

whereas repeating the same passages of the proof in case of

exact timestamps (i.e., exact WF2Q+ with stepwise V (t)), the

resulting B-WFIk would be Lk + 2φkL.

The B-WFIs for S-KPS and GFQ have not been com-

puted by their authors. However both these algorithms and

QFQ implement the same policy (WF2Q+), differing only

in how they approximate the timestamps. Generalizing the

previous proof, we can show that GFQ has a slightly

lower B-WFIkGFQ = 2φkσi + 2φkL, whereas S-KPS has

B-WFIkS−KPS = B-WFIkQFQ = 3φkσi + 2φkL.

Relative fairness: The relative fairness bound, RFB, is defined

as the maximum difference, over any time interval [t1, t2] and

pair of flows k and p, between the normalized service given

to two continuosly backlogged flows:

RFB ≡ max
∀k,p,[t1,t2]

∣

∣

∣

∣

W k(t1, t2)

φk
−

W p(t1, t2)

φp

∣

∣

∣

∣

(26)

Consider two flows, k and p, belonging, respectively, to

groups i and j, and continuously backlogged during a time

interval [t1, t2]. Equation (6), Theorem 2, and the fact that

a group is served only if eligible, give an upper bound to

the normalized service received by a flow in the interval,

resulting in
Wk(t1, t2)

φk ≤ W (t1, t2) + L + 4σi. The proof

of Theorem 7 establishes a lower bound for the normalized

service. Substituting these two extremes in (26) and taking

the maximum over all possible flow/group pairs, we have

RFB ≤ 3L+ 4max(σi, σj) + 3min(σi, σj) (27)

As for GFQ and S-KPS we have RFBS−KPS = 2L+ Lk

φk +
Lp

φp +3(σi+σj) and RFBGFQ = 2L+Lk

φk +
Lp

φp +2(σi+σj). To

put the bound for FRR in a form that allows it to be compared

more easily against the bound for QFQ, we assume that all

packets have the same length (otherwise RFBFRR may be

higher), and get RFBFRR = max(4σi +
L
φk + 10σj, 4σj +

L
φp + 10σi) (in the best case for FRR, i.e., for C = 2).

12

B. Time Guarantees

Expressing the service guarantees in terms of time is only

possible if the link rate is known. The T-WFIk guaranteed to

a flow k on a link with constant rate R is defined as:

T-WFIk ≡ max

(

tc − ta −
Qk(t+a)

φkR

)

(28)

where ta and tc are, respectively, the arrival and completion

time of a packet, and Qk(t+a) is the backlog of flow k just

after the arrival of the packet.

Theorem 8: T-WFI for QFQ For a flow k belonging to

group i QFQ guarantees

T-WFIk = (3σi + 2L)
1

R
(29)

The proof, omitted for brevity, is conceptually similar to

the one for the B-WFI. Here again, note that the factor σi/R
(or equivalent) is present in the T-WFI of any near-optimal

scheduler. For comparison, a perfectly fair ideal fluid system

would have T-WFIk = 0, whereas for WF2Q+, which uses

exact timestamps, repeating the same passages of the proof

yields T-WFIk = (L
k

φk + 2L)/R
Same as for the B-WFI, the T-WFI of S-KPS happens to

be equal to that of QFQ, whereas the T-WFI of GFQ is lower

than that of QFQ by σi/R. Finally, about FRR, as already

shown in Section II, the T-WFI of FRR in a realistic scenario

is not lower than (24σi + 19L) 1
R

.

VII. EXPERIMENTAL RESULTS

We evaluate the performance of QFQ by comparing its service

properties and actual run times with those of other scheduling

algorithms. Due to space limitations we only report a subset

of our experimental results. The algorithms selected for the

experiments presented here are DRR, to represent the class

of high performance round robin schedulers; WF2Q+, as a

reference point for its optimal service properties, and S-KPS,

as an example of high-efficiency timestamp-based scheduler.

The experiments cover two aspects: service properties are

evaluated by running experiments with NS on a simulated

topology and measuring end-to-end delays and their variations;

absolute performance is evaluated by measuring actual run

times of production-quality code, i.e., code that includes all

features needed in an actual deployment, such as support

for dynamic flow creation and destruction, and exception

handling. These features are normally neglected in prototype

implementations but are necessary in a realistic test as their

support may impose significant overhead to the run times.

A. Evaluation of Service Properties

To prove the effectiveness of the service properties guaranteed

by QFQ we implemented it in the ns2 simulator [1] and we

compared it to DRR, S-KPS and WF2Q+.

The network topology used in the simulations is inspired

by the one used in [7], and is depicted in Fig. 7. Links R0-R1

and R1-R2 have 10 Mbit/s bandwidth and 10 ms propagation

delay; all the other links have 100 MBit/s and 1 ms. The

observed flows are f0 (a 32 Kbit/s CBR from S0 to K0), and

s0

s1

s2

s3 s4

k0

k1

k2

k3 k4

r0 r1 r2

Fig. 7. Simulated scenario. Flows f0 and f1 are originated by nodes S0 and
S1, whereas S2 generates 50 CBR flows to perturbate the traffic. All routers
run the same scheduling algorithm.

f1 (a 512 Kbit/s CBR from S1 to K1). Interfering flows are

a 512 Kbit/s CBR from S1 to K1 (same as f1), fifty 160
Kbit/s CBR flows from S2 to K2, and two best effort flows,

one from S3 to K3 and one from S4 to K4, each generated

from its own Pareto source with mean on and off times of

100 ms, α = 1.5, and mean rate of 2 MBit/s (larger than

the unallocated bandwidth of the links between the routers, in

order to saturate their queues).

f0 (32 Kbit/s) f1 (512 Kbit/s)

avg ± stddev max avg ± stddev max

DRR 134.87 ± 34.28 216.99 126.32 ± 30.64 206.40

S-KPS 46.28 ± 5.42 59.91 22.59 ± 0.60 23.34

QFQ 43.16 ± 5.60 47.56 22.76 ± 0.61 23.33

WF2Q+ 34.39 ± 0.35 35.20 22.59 ± 0.61 23.33

TABLE II
SIMULATION RESULTS FOR THE TOPOLOGY OF FIG. 7. END-TO-END

DELAYS (AVERAGE/STDDEV, MAX) IN MS FOR THE OBSERVED FLOWS.

Table II shows the end-to-end delays (average, stddev and

maximum) experienced by f0 and f1 during the last 15
seconds of simulation (the total simulation time was 20 s, the

first five where not considered to let the values settle). QFQ

performs as expected, with delays similar to the ones measured

for S-KPS, given the common nature that the two schedulers

share. DRR shows much larger delays and deviations, which

is also expected because of the inherent O(N) WFI of this

family of schedulers.

The “max” value for the low bandwidth flows is in good

accordance with the WFI values computed in Section VI: the

delay component inversely proportional to the flow’s rate is

best for WF2Q+ and grows as we move to QFQ, S-KPS

and DRR. The larger standard deviation of the delays in

QFQ and S-KPS, compared to WF2Q+ comes from the use

of approximate timestamps, which gives QFQ and S-KPS a

WFI larger than that of WF2Q+. Also note how the effect of

approximations is higher for f0 (a low rate flow) than for f1,

which is a high rate flow.

B. Run-time Performance

Together with the good service guarantees, the most interesting

feature of QFQ is the constant (independent of the number of

flows) and small per-packet execution time, which makes the

algorithm extremely practical.

13

To study the actual performance of our algorithm, and

compare it with other alternatives, we have measured the C

versions of QFQ and various other schedulers, including S-

KPS, which we implemented as part of the Dummynet [4]

traffic shaper, running on FreeBSD, Linux and Windows.

Fig. 8. Our testing environment: a controller drives the scheduler module
with programmable sequences of requests.

We have performed a thorough performance analysis by run-

ning the schedulers in the environment shown in Fig. 8, where

we could precisely control the sequence of enqueue/dequeue

requests presented to the schedulers. The controller lets us

decide the number and distribution of flow weights and packet

sizes, as well as keep track of the number of backlogged flows

and the total amount of traffic queued in the scheduler. These

parameters may impact the behaviour of the schedulers, by

influencing the code paths taken by the algorithms, and the

memory usage and access patterns. The latter are extremely

important on modern CPUs, where cached and non-cached

access times differ by one order of magnitude or more.

In the next section we report experimental results for the

average enqueue()+dequeue() times (including generation and

disposal by the controller) in different operating conditions

(number and distribution of flows, queue size occupation). One

of the configurations (the “NONE” case) only measures the

controller’s costs, so we can determine, by difference, the time

consumed by the scheduler.

This test setup does not allow us to separate the cost of

enqueue() and dequeue() operations, but the problem is not

relevant. First, in the steady state, there is approximately the

same number of calls for the two functions. Only when a

link is severely overloaded the number of enqueue() will be

much larger than its counterpart, but in this case dropping a

packet (in the enqueue()) is very inexpensive. Second, in most

algorithms it is possible to move some operations between

enqueue() and dequeue(), so it is really the sum of the two

costs that counts to judge the overall performance of an

algorithm.

Test cases: our tests include the following algorithms:

NONE the baseline case, measures the cost of packet generation
and disposal, including memory-touching operations. Pack-
ets generated by the controller are stored in a FIFO queue,
and extracted when the controller calls dequeue();

FIFO the simplest possible scheduler, an unbounded FIFO queue.
Compared to the baseline case, here we exercise the
scheduler’s API, which causes one extra function calls and
counter updates on each request;

DRR the Deficit Round Robin scheduler, where each flow has a
configurable quantum size;

QFQ QFQ, as described in this paper. We use 19 groups, packet
sizes up to 2 KBytes, and weights between 1 and 216;

S-KPS our implementation from the description in [9], with some
minor optimizations, and revised by the original authors.

Internal parameters (e.g., lmin, lmax) have been set to
values similar to those used for QFQ;

WF2Q+the WF2Q+ algorithm taken from the FreeBSD’s dum-
mynet code. It has O(logN) scaling properties, but it
is of interest to determine the break-even point between
schedulers with different asymptotical behaviour.

Flow distributions: we ran extensive tests with different com-

binations and number of flows (from 1 to 128K), with various

weight and packet size distributions. These configurations

show how the schedulers depend on the number of flow, traffic

classes and also their sensitivity to memory access times.

Load conditions: to emulate different load conditions for the

link, we generate requests for the scheduler with three patterns:

SMALL and LARGE generate bursts of 5N and 30N packets,

respectively (where N is the number of active flows), and then

completely drain the scheduler; FULL keeps the scheduler

constantly busy, with a total backlog between 3N and 30N

packets. The bursty patterns try to reproduce operation on a

normally unloaded link, whereas the FULL pattern mimics the

behaviour of a fully loaded link driven by TCP or otherwise

adaptive flows, which modify their offered load depending on

available bandwidth.

 0

 100

 200

 300

 400

 500

 600

 700

1 4 16 64 256 1k 4k 32k

ti
m

e
 (

n
s
)

Flows

enqueue() + dequeue() time, ns

NONE
FIFO
DRR

QFQ

S-KPS
WF2Q+

Fig. 9. Scaling properties of the various algorithms. WF2Q+ grows as
O(logN), reaching 2000 ns for 32k flows (see Table III).

C. Results

Table III and Figure 9 report some of the most significant

test results, measured on a low-end desktop machine (2.1GHz

CPU, 32-bit OS, 667MHz memory bandwidth), with code

compiled with gcc -O3. Different platforms perform propor-

tionally to the platform’s performance (e.g., a 3 GHz Nehalem

CPU is almost twice as fast; a 200 MHz MIPS CPU on a low-

cost Access Point is 30-40 times slower in running the same

experiments). Similarly, the point where cache effects become

visible varies depending on available cache sizes.

Figure 9 shows clearly that all O(1) algorithms do not

depend on the number of flows, whereas WF2Q+ shows the

expected O(logN) behaviour. We see that DRR and FIFO

are really inexpensive, and most of the time in the test is

consumed by the packet generator (the curve labeled NONE

in the figure), which accounts for approximately 60 ns per

enqueue/dequeue pair. All schedulers, and the generator itself,

14

Time (nanoseconds) for an enqueue()/dequeue() pair and
packet generation. Standard deviations are within 3% of
the average (not reported to reduce the clutter in the table)

8 flows

NONE FIFO DRR QFQ S-KPS WF2Q+

SMALL 62 80 102 168 458 356
LARGE 60 82 104 162 530 350
FULL 60 80 102 163 543 344

512 flows

NONE FIFO DRR QFQ S-KPS WF2Q+

SMALL 62 82 111 170 468 732
LARGE 65 84 110 172 550 730
FULL 64 85 110 175 560 740

32768 flows

NONE FIFO DRR QFQ S-KPS WF2Q+

SMALL 90 114 185 230 550 1900
LARGE 103 126 158 234 603 1880
FULL 62 117 147 222 601 1690

1:32k,2:4k,4:2k,8:1k,128:16,1k:1 flows

NONE FIFO DRR QFQ S-KPS WF2Q+

SMALL 91 120 167 247 598 1868
LARGE 107 131 160 250 595 1734
FULL 92 119 160 255 612 1715

TABLE III
A SUBSET OF EXPERIMENTAL RESULTS, FOR DIFFERENT FLOW

DISTRIBUTIONS AND LOAD CONDITIONS.

show a modest increase of the execution time as the number

of flows goes (on this particular platform) above 4k. This is

likely due to the working set of the algorithm overflowing

the available cache, which causes cache misses that impact

on the total execution time. In absolute terms, QFQ behaves

really well, consuming about 100-110 ns (excluding the traffic

generation) up to the point where cache misses start to

matter. S-KPS also has reasonably good performance, taking

approximately 500 ns (2.5 . . .3 times the cost of QFQ).

Finally, we would like to note that while WF2Q+ has

obvious scalability issues, for configurations with a small

number of flows it can still be a viable alternative.

The final block of the table reports the result of experiments

with a large mix of flows using different weights. This case

does not show significant differences with the case where all

flows have the same parameters.

Table III and Figure 9 and other experiments not reported

here, show that algorithms can have peculiar behaviours in

certain conditions. As an example, QFQ takes a modest

performance hit when there is only one flow backlogged. This

happens because, in the dequeue code, the removal of the flow

from the group leaves the group empty and triggers unnec-

essary calls to unblock groups() and make eligible(). S-KPS

seems to have slightly better performance in the presence of

small bursts, presumably due to similar reasons (certain code

paths becoming more frequent). DRR takes a performance

hit when the packet size is not matched with the quantum

size, as certain packets require two rounds instead of one to

be processed. These variations tend to be small in absolute

and relative terms, but are measurable as we are dealing with

extremely fast algorithms where even small changes in the

instruction counts affect the performance.

QFQ is a significant step towards the feasibility of software

packet processing on 10 Gbit/s links. At these speeds, the per-

packet budget varies between 67.2 and 1230 ns per packet (for

64 and 1518 byte frames). QFQ’s speed (100-150 ns/pkt) fits

well in the budget, together with recent results on fast packet

I/O [14].

VIII. CONCLUSIONS

In this paper we presented QFQ, an approximate imple-

mentation of WF2Q+ which can run in true constant time,

with very low constants and using extremely simple data

structures. The algorithm is based on very simple instructions,

and uses very small and localized data structures, which make

it amenable to a hardware implementation. Together with a

detailed description of the algorithm, we provide a theoretical

analysis of its service properties, and present an accurate

performance analysis, comparing QFQ with a variety of other

schedulers. The experimental results show that QFQ lives up

to its promises: it is faster than other schedulers with optimal

service guarantees, only two times slower than DRR, and

operates, even in software, at a rate compatible with 10Gbit/s

interfaces.

QFQ and the other algorithms analyzed here are available

at [5] as well as part of standard distributions of FreeBSD

and Linux, and are included in the Dummynet [4] traffic

shaper/network emulator for FreeBSD, Linux and Windows.

REFERENCES

[1] http://www.isi.edu/nsnam/ns/.
[2] Jon C. R. Bennet and Hui Zhang. Hierarchical packet fair queueing

algorithms. IEEE/ACM Transactions on Networking, 5(5):675–689,
1997.

[3] Jon C. R. Bennett and Hui Zhang. WF2Q: Worst-case fair weighted fair
queueing. Proceedings of IEEE INFOCOM ’96, pages 120–128, March
1996.

[4] Marta Carbone and Luigi Rizzo. Dummynet revisited. ACM SIGCOMM

Computer Communication Review, 40(2):12–20, 2010.
[5] Fabio Checconi, Paolo Valente, and Luigi Rizzo. QFQ: Efficient Packet

Scheduling with Tight Bandwidth Distribution Guarantees (full paper
and experimental code). http://info.iet.unipi.it/∼luigi/qfq/.

[6] Chuanxiong Guo. SRR: An O(1) time complexity packet scheduler for
flows in multi-service packet networks. Proceedings of ACM SIGCOMM

2001, pages 211–222, August 2001.
[7] Chuanxiong Guo. G-3: An O(1) Time Complexity Packet Scheduler

That Provides Bounded End-to-End Delay. Proceedings of IEEE

INFOCOMM 2007, pages 1109–1117, May 2007.
[8] Martin Karsten. SI-WF2Q: WF2Q approximation with small constant

execution overhead. Proceedings of INFOCOM 2006, pages 1–12, April
2006.

[9] Martin Karsten. Approximation of generalized processor sharing with
stratified interleaved timer wheels. IEEE/ACM Transactions on Network-
ing, 18(3):708–721, 2010.

[10] Abdesselem Kortebi, Luca Muscariello, Sara Oueslati, and James
Roberts. Evaluating the number of active flows in a scheduler realizing
fair statistical bandwidth sharing. SIGMETRICS Performance Evaluation
Review, 33(1):217–228, 2005.

[11] Luciano Lenzini, Enzo Mingozzi, and Giovanni Stea. Tradeoffs between
low complexity, low latency, and fairness with deficit round-robin
schedulers. IEEE/ACM Transactions on Networking, 12(4):681–693,
2004.

[12] Larry L. Peterson and Bruce S. Davie. Computer Networks - A systems

Approach. Morgan Kaufmann Publishers, 2010.
[13] Sriram Ramabhadran and Joseph Pasquale. The stratified round robin

scheduler: design, analysis and implementation. IEEE/ACM Transac-

tions on Networking, 14(6):1362–1373, 2006.
[14] Luigi Rizzo. Revisiting network I/O APIs: the netmap framework.

Communications of the ACM, 55(3):45–51, March 2012.

15

[15] M. Shreedhar and George Varghese. Efficient fair queuing using deficit
round robin. IEEE/ACM Transactions on Networking, 4(3):375–385,
1996.

[16] S.J.Golestani. A self-clocked fair queueing scheme for broadband
applications. Proceedings of IEEE INFOCOM ’94, pages 636–646, June
1994.

[17] Donpaul C. Stephens, Jon C.R. Bennett, and Hui Zhang. Implementing
scheduling algorithms in high-speed networks. IEEE Journal on Selected

Areas in Communications, 17(6):1145–1158, June 1999.
[18] Dimitrios Stiliadis and Anujan Varma. A general methodology for de-

signing efficient traffic scheduling and shaping algorithms. Proceedings
of IEEE INFOCOM ’97, pages 326–335, April 1997.

[19] Ion Stoica and H. Abdel-Wahab. Earliest eligible virtual deadline first:
A flexible and accurate mechanism for proportional share resource
allocation. Technical Report 95-22, Department of Computer Science,
Old Dominion University, November 1995.

[20] Subhash Suri, George Varghese, and Girish Chandranmenon. Leap
forward virtual clock: A new fair queuing scheme with guaranteed delays
and throughput fairness. Proceedings of IEEE INFOCOM ’97, pages
557–565, April 1997.

[21] Paolo Valente. Exact gps simulation and optimal fair scheduling
with logarithmic complexity. IEEE/ACM Transactions on Networking,
15(6):1454–1466, 2007.

[22] Paolo Valente. Extending WF2Q+ to support a dynamic traffic mix.
Proceedings of AAA-IDEA 2005, pages 26–33, June 2005.

[23] Jun Xu and Richard J. Lipton. On fundamental tradeoffs between delay
bounds and computational complexity in packet scheduling algorithms.
IEEE/ACM Transactions on Networking, 13(1):15–28, 2005.

[24] Xin Yuan and Zhenhai Duan. Fair round-robin: A low complexity packet
scheduler with proportional and worst-case fairness. IEEE Transactions

on Computers, 58(3):365–379, 2009.

