
Towards a Billion Routing Lookups per Second in Software

Marko Zec
University of Zagreb, Croatia

zec@fer.hr

Luigi Rizzo
Università di Pisa, Italy
rizzo@iet.unipi.it

Miljenko Mikuc
University of Zagreb, Croatia

miljenko.mikuc@fer.hr

ABSTRACT

Can a software routing implementation compete in a field
generally reserved for specialized lookup hardware? This
paper presents DXR, a lookup scheme based on transforming
large routing tables into compact lookup structures which
easily fit into cache hierarchies of modern CPUs.

Our transform distills a real-world BGP snapshot with
417,000 IPv4 prefixes and 213 distinct next hops into a struc-
ture consuming only 782 Kbytes, less than 2 bytes per prefix.
Experiments show that the corresponding lookup algorithm
scales linearly with the number of CPU cores: running on a
commodity 8-core CPU it yields average throughput of 840
million lookups per second for uniformly random IPv4 keys.

We prototyped the algorithm inside the FreeBSD kernel,
so that it can be used with standard APIs and routing dae-
mons such as Quagga or XORP, and tested for correctness
by comparing lookup results with the traditional BSD radix
tree implementation.

Categories and Subject Descriptors

C.2.6 [Computer-Communication Networks]: Inter-
networking; C.4 [Performance of Systems]:

General Terms

Algorithms, Performance, Experimentation

Keywords

Packet Lookup and Classification, Software Routers

1. INTRODUCTION
Determining each packet’s next hop by finding the longest

matching prefix in a forwarding table is the most fundamen-
tal operation which every Internet router has to perform.
Lookups have to be fast: for example, a single 100 GB/s
Ethernet port may receive up to 144 million packets per
second, and the search database in today’s Internet routers
may contain up to around 420,000 IPv4 prefixes, with no
signs of slowdown in growth of number of prefixes being an-
nounced to global BGP tables. Furthermore, route lookup
is only one of many operations that a (software) router must
perform, so the loookup cost must be a small fraction of the
packet interarrival time.

Doing routing lookups in software has somewhat fallen
out of focus of the research community in the past decade,
as the performance of general-purpose CPUs was not on par

with quickly increasing packet rates. Faced with other bot-
tlenecks inherent to software routers, such as limited speeds
of early peripheral buses, both the research community and
the industry moved to devising specialized hardware rout-
ing lookup schemes. While early hardware routing lookup
proposals were centered around TCAMs or fast SRAMs, the
rumor has it that most router vendors today use ASICs cou-
pled with lots of reduced latency DRAM chips for doing
pipelined routing lookups in high-speed line cards.

The landscape has changed, however. First, the per-
formance potential of general-purpose CPUs has increased
significantly over the past decade, thanks to major im-
provements in instruction-level parallelism, shorter execu-
tion pipelines, better branch predictors, larger CPU caches,
and higher system and memory bus bandwidths; only the
DRAM latency remains unchanged at roughly 50 ns. The
silicon industry is embracing parallelism: 4 or 8 core general-
purpose CPUs are a commodity today, with 16 and 32 core
systems expected to become mainstream soon.

Secondly, the increasing interest for virtualized systems
and for software defined networks calls for a communication
infrastructure that is more flexible and less tied to the hard-
ware. Software packet processing can address this require-
ment, and the forementioned performance improvements in
general purpose hardware are very timely in this respect.

Third, a number of recent works [6, 9, 10] have proposed
and demonstrated fast frameworks for software packet pro-
cessing with very little per-packet overhead, making the case
for revisiting the problem of software route lookups.

Our contribution: In this paper we address the problem
of next-hop lookups for IPv4 packets, and propose a tech-
nique which runs efficiently in software on modern general-
purpose systems (multi core, fast caches, high latency mem-
ory). We describe DXR, a routing lookup scheme which
aims at achieving high speeds by exploiting CPU cache lo-
cality, even when operating with large sets of network pre-
fixes. Small memory footprint permits our lookup structures
to reside entirely in caches even with full sized BGP tables.
This largely eliminates expensive DRAM accesses during the
lookup process, and makes the algorithm scale well across
multiple execution cores, exceeding 800 million lookups per
second on an 8-core system for random queries, and reaching
significantly higher speeds for repetitive queries.

Parts of DXR are similar to other proposed techniques,
which is not surprising given that the minuscule time budget
for each lookup requires simple solutions. Our smaller data
structures, however, present a significant improvement with
respect to other software proposals.

The rest of the paper is structured as follows: Section 2
describes previous work. Section 3 describes our lookup
scheme, motivates design choices, and discusses implemen-
tation tradeoffs. Section 4 contains a detailed performance
evaluation under different operating conditions.

2. RELATED WORK
IP lookup algorithms have been well studied in the past,

first for software-based solutions, and eventually focusing on
designs that could be implemented in hardware to overcome
the perceived (or actual) mismatch between network and
CPU speeds. Due to space limitations we only summarize
the main results here.

Ruiz-Sanchez et al. [11], and Waldvogel et al [16] give use-
ful surveys of software solutions up to 2001 (which covers
most of the research on software lookups). Traditional so-
lutions involve tries [12], optimized to reduce the number of
search steps by compressing long paths (Level-Compressed
tries, [8]), or using n-ary branching (Multibit Tries, [14]).
Given the small and fixed problem size, some ad-hoc solu-
tions have been proposed that expand the root into a 2k ar-
ray of pointers to subtree, as used by DIR-24-8 [5], Lampson-
Varghese [7], and also in this paper. Prefixes can be trans-
formed into address ranges or intervals, which reduces the
lookup to a binary search into an array of ranges [7]. Simi-
larly exploiting the problem size, the Lulea scheme [3] par-
titions the trie in three levels (using 16, 8, 8 bits) and then
uses a compact representation of the pointers.

As an alternative, Waldvogel et al [16] propose the use
of separate hash tables for each prefix length, starting the
search from the most specific prefix and then moving up.
This scheme is elegant but not particularly fast compared
to other solutions for IPv4.

Caching recent look-up results using on-chip memory is
discussed for instance in [2] and [13]. [2] in 1999 achieved
around 88 million lookups per second with host address
caching on 500 MHz DEC Alpha with 1 Mbyte of L2 cache
(updates were not discussed). The approach presented in
[13] relies on temporal locality in the lookups. However,
such locality is today rare in the core of the network.

Especially important in [11] is the comparison of actual
run times of multiple algorithms, which permits ranking
them irrespective of absolute performance. The peak per-
formance reported in the literature for such software solu-
tions ranges between 2 and 5 Million lookups per second
(Mlps) on 1999 machines [11], and 3 to 20 Mps on 2006
hardware [4].

Scaling these figures to modern hardware is not trivial, be-
cause the performance is dominated by memory access laten-
cies. In fact, all the rest being equal, performance may vary
by an order of magnitude or more depending on routing ta-
ble size and request distributions. This also means that the
memory footprint of a lookup scheme has a strong impact
on its feasibility, especially as the number of prefixes grows
(going from approx. 38 K prefixes in 1997 to the current
420 K prefixes in a full BGP table). In this respect, existing
schemes tend to have quite large memory footprints, from
the 24 bytes per prefix of the Lampson-Varghese scheme [7]
to the 4.5 bytes/prefix of the Lulea [3].

The problem size can be reduced by doing routing ta-
ble aggregations. SMALTA [15] shows a practical, near-
optimal FIB aggregation scheme that shrinks forwarding ta-
ble size without modifying routing semantics or the external

behavior of routers, and without requiring changes to FIB
lookup algorithms and associated hardware and software.
The claimed storage reduction is by at least 50%.

Due to the general inability of doing packet processing at
line rate in software, the past decade has seen a shift of in-
terest to hardware-related solutions for routing lookups. As
mentioned in the previous section, however, the combina-
tion of faster processing nodes, and an increased interest in
virtualization, makes software IP lookups relevant again.

3. DISTILLING ROUTING TABLES
Our lookup algorithm and data structures are based on

the idea that a routing table, essentially a database con-
taining a large number of network prefixes with different
prefix lengths, can be projected onto a set of contiguous and
non-overlapping address ranges covering the entire address
span of a network protocol. The lookup procedure becomes
simple: the address range containing the key can be found
through binary search.

The concept of constructing lookup schemes based on ad-
dress ranges (or intervals) is not new [7]; the novelty in our
scheme is a careful encoding of the information, so that ad-
dress ranges and associated information consume a small
amount of memory, and are organized in a way which inher-
ently exploits cache hierarchies of modern CPUs to achieve
high lookup speeds and parallelism of execution on multiple
processor cores.

Note that our primary goal was not to implement a univer-
sal routing lookup scheme: data structures and algorithms
which we describe in this paper have been optimized exclu-
sively for the IPv4 protocol.

3.1 Building the search data structure
A network prefix commonly refers to a tuple {network ad-

dress, prefix length}. Prefix length is the number of leftmost
bits of a network address which are matched against the key;
the remaining bits are ignored. Classless Interdomain Rout-
ing principle (IETF RFC 4632) mandates that among all
the matching prefixes found in a database for a given key,
the one with the longest prefix must be selected.

Consider a sample routing database specified in a canon-
ical {prefix, next hop} notation:

IPv4 prefix next hop
1: 0.0.0.0/0 A
2: 1.0.0.0/8 B
3: 1.2.0.0/16 C
4: 1.2.3.0/24 D
5: 1.2.4.5/32 C

Building of the search data structure begins by expanding
all prefixes from the database into address ranges, and tak-
ing into account that more specific prefixes take precedence
over less specific ones, this results in a sorted sequence of
non-overlapping address ranges:

IPv4 address interval next hop (prefix)
1: [0.0.0.0 .. 0.255.255.255] A (1)
2: [1.0.0.0 .. 1.1.255.255] B (2)
3: [1.2.0.0 .. 1.2.2.255] C (3)
4: [1.2.3.0 .. 1.2.3.255] D (4)
5: [1.2.4.0 .. 1.2.4.4] C (3)
6: [1.2.4.5 .. 1.2.4.5] C (5)
7: [1.2.4.6 .. 1.2.255.255] C (3)
8: [1.3.0.0 .. 1.255.255.255] B (2)
9: [2.0.0.0 .. 255.255.255.255] A (1)

Neighboring address ranges that resolve to the same next
hop are then merged. In the above example, ranges 5, 6 and
7 all resolve to next hop ”C”, and the table reduces to:

IPv4 address interval next hop (prefix)
1: [0.0.0.0 .. 0.255.255.255] A (1)
2: [1.0.0.0 .. 1.1.255.255] B (2)
3: [1.2.0.0 .. 1.2.2.255] C (3)
4: [1.2.3.0 .. 1.2.3.255] D (4)
5: [1.2.4.0 .. 1.2.255.255] C (3,5)
6: [1.3.0.0 .. 1.255.255.255] B (2)
7: [2.0.0.0 .. 255.255.255.255] A (1)

Next, we can trim information that is redundant or not
useful for lookup purposes. We only need the start of an in-
terval (the end is derived from the next entry); the reference
to the original prefix is not needed; and the next hop can be
encoded as a small (e.g. 16-bit) index in an external next
hop descriptor table. This reduces the size of each entry to
only 6 bytes. Thus, the structure derived from the above
example becomes:

interval base next hop
1: 0.0.0.0 A
2: 1.0.0.0 B
3: 1.2.0.0 C
4: 1.2.3.0 D
5: 1.2.4.0 C
6: 1.3.0.0 B
7: 2.0.0.0 A

It can be shown that for any given routing table containing
P prefixes, the resulting address range table will contain no
more than N = 2P-1 non-overlapping ranges. Provided that
such a table is kept sorted, it can be searched in logarithmic
time in the number of address range entries. With global
BGP routing table sizes approaching 500,000 prefixes, and
with a pessimistic assumption that the prefix distribution
does not permit for address range aggregation, the address
range table would contain no more than 106 elements. At
6 bytes each, this is still too much space, and the number
of search steps (20 for 106 elements) is prohibitively large
compared to our target search times.

The next construction step is then to shorten the search
by splitting the entire range in 2k chunks, and using the
initial k bits of the address to reach, through a lookup table,
the range table entries corresponding to the chunk. Figure 1
shows the arrangement.

3.2 Data structures
The concept of indexing the lookup tables with a relatively

large portion of the IPv4 key was inspired by [5], although
we use fewer bits and thus smaller lookup tables, aiming at
fitting the whole table as high as possible in the CPU cache
hierarchy.

The small key size (32 bit) makes this approach particu-
larly effective, because the initial table in Figure 1 does not
consume an exceeding amount of space, and permits further
optimizations in time or space, as discussed below.
Lookup Table Entries: Each entry in the lookup table
must contain the offset of the corresponding chunk in the
range table, and the number of entries in the chunk. How-
ever, if a chunk only contains one entry (i.e. a single next
hop), the lookup table can point directly to the next hop
table, allowing the completion of the lookup with a single
L2 cache access.

Figure 1: The lookup table on the left, the range
table in the center, the next hop table on the right.

32 bits suffice for the entries in the lookup table. We use
19 bits as an index into the range table (or into the prefix
table), and 12 bits for the size of each chunk; one of these
12-bit configurations is reserved to indicate that this entry
points to the prefix table. The remaining bit is used to
indicate the format of the range table entries, as discussed
below.

This arrangement works for up to 219 address ranges after
aggregation, and up to 4095 entries per chunk. These num-
bers should provide ample room for future growth. Also
consider that the decision on how to split the bits can be
changed at runtime when rebuilding the tables, and it is
trivial to recover extra bits e.g. by artificially extending
chunks so that they have a multiple of 2, 4, 8 entries, with
negligible memory overhead (in fact, chunks with only one
address cannot exist, as they are represented by a pointer
to the next hop table).
Range Table Entries: The addresses in the range table
entries only need to store the remaining 32− k bits, further
reducing the memory footprint. Thus, if we choose k ≥ 16
bits for the lookup index, and assuming each next hop can be
encoded with 16 bits, 4 bytes suffice for these “long” entries.
For example, the chunk covering the range 1.2.0.0/16 can be
encoded as:

interval base next hop
1: 0.0 C
2: 3.0 D
3: 4.0 C

We introduced a further optimization which is especially
effective for large BGP views, where the vast majority of
prefixes are /24 or less specific, and the number of distinct
next hops is typically small. If all entries in a chunk contain
/24 or less specific ranges, and next hops that can be en-
coded in 8 bit, we use a “short” format with only 16 bits per
entry (the least significant 8 bits do not need to be stored).
Therefore, the short format for the 1.2.0.0/16 chunk is:

interval base next hop
1: 0 C
2: 3 D
3: 4 C

Table 1: Sizes of the DXR data structures for several different IPv4 routing table snapshots. The time to
rebuild the lookup structures from scratch is also given, in milliseconds.

D16R scheme D18R scheme
Table IPv4 Next Total Full Short Long Build Total Full Short Long Build

snapshot prefixes hops bytes chunks ranges ranges time bytes chunks ranges ranges time
static 4 2 262248 2 0 8 0.01 1048676 2 0 7 0.03
LINX 417523 213 800672 12935 200436 33130 96.81 1548700 25494 211724 17885 220.52

U. Oregon 421059 38 827204 13627 220042 31010 98.91 1574872 27251 233618 14531 230.99
PAIX 412568 80 765752 13082 215432 17700 96.28 1522992 24801 217078 9579 221.73

As mentioned, one bit in the lookup table entry is used to
indicate whether a chunk is stored in long or short format.

3.3 Updating
Given that our lookup structures store only the minimum

of the information necessary for resolving next hop lookups,
a separate database which stores information on all the pre-
fixes is required for rebuilding the lookup structures. The
radix tree already available in FreeBSD kernel is perfectly
suitable for that purpose, although it should be noted that
our lookup structures can be derived from any other routing
database format.

When a prefix covering a single address range chunk is
added or removed from the primary database, our current
implementation replaces the entire chunk and rebuilds it
from scratch. The process of rebuilding the chunk begins by
finding the best matching route for the first IPv4 address be-
longing to the chunk, translating it to an range table entry,
and storing it on a heap. The algorithm then continues to
search the primary database for the next longest-matching
prefix until it falls out of the scope of the current chunk. If
the heap contains only a single element when the process
ends, the next hop can be encoded in lookup table, and the
heap may be released.

As more prefixes are found, if they point to the same
next hop as the descriptor currently on the top of the ad-
dress range heap, they are simply skipped over, until a prefix
pointing to a different next hop is encountered. This allows
for very simple yet surprisingly efficient aggregation of rout-
ing information, and is the key factor which contributes to
the small footprint of the lookup structures.

Updates covering multiple chunks (prefix lengths < k) can
be processed in parallel, since each chunk can be treated as
an independent unit of work. We have not implemented this
feature (we service all update requests in a single thread),
but that approach could be used to improve update speed
where update latencies would be particularly important.

Another technique for reducing the time spent on pro-
cessing updates is coalescing multiple add/remove requests
into a single update; we have accomplished this by delaying
the processing of updates for several milliseconds after they
have been received.

3.4 Lookup algorithm
The lookup procedure is completely straightforward. We

first use the k leftmost bits of the key as an index in the
lookup table. From there we know whether the entry points
to the next hop (in which case we are done), or it points to
a chunk (short or long, depending on the format bit). In
this case we use the (offset, length) information to perform
a binary search on the entries of the range table covering

our chunk.
Since range table entries are small (2 or 4 bytes), as the

binary search proceeds, chances are that the remaining en-
tries to be looked up have already migrated from L2 to the
L1 CPU cache (today’s cache line sizes being 64 bytes long).
This inherently further speeds up the lookup process.

4. PERFORMANCE EVALUATION
Our primary test vectors were three IPv4 snapshots from

routeviews.org BGP routers, each with slightly different dis-
tribution and number of prefixes and next hops (Table 1).
Here we present the results obtained using the LINX snap-
shot, selected because it is the most challenging for our
scheme: it contains the highest number of next hops, and an
unusually high (for a BGP router) number of prefixes more
specific than /24, see Figure 2.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 8 10 12 14 16 18 20 22 24 26 28 30 32

F
ra

c
ti
o
n
 o

f
p
re

fi
x
e
s

Prefix length

Figure 2: Distribution of prefix lengths for April
2012 linx.routeviews.org BGP snapshot

All tests were performed on an AMD FX-8150 machine
with 4 Gbytes of RAM. The CPU has 8 independent ex-
ecution cores; each pair of cores share a private 2 Mbyte
L2 cache block, for a total of 8 Mbytes of L2 cache. All
eight cores share a single 8 Mbytes block of L3 cache. While
the CPU supports automatic clock frequency scaling up to
4.2 GHz, we fixed the clock to 3.6 GHz during our tests.
According to manufacturer specifications, all cores may run
continuously at full load at that frequency level with the
chip remaining within its thermal design limits.

Lookup performance was measured using synthetic
streams of uniformly random IPv4 keys, excluding multi-
cast and reserved address ranges. To remove the overhead
of random number generation and its impact on CPU caches,
the keys were precomputed and stored in a flat 1 Gbyte ar-
ray, where they were fetched from within the timing threads
running on each core.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 2 3 4 5 6 7 8

M
ill

io
n
s
 I
P

v
4
 l
o
o
k
u
p
s
 /
 s

e
c
o
n
d

Active CPU cores

D18R repeated
D16R repeated

D18R random
D16R random

Figure 3: Average IPv4 lookup performance. The
top two curves are for repeated lookups (mimicking
a more realistic traffic pattern) of the same targets,
the bottom curves are for random address lookups.
D18R is slightly better than D16R due to a larger
fraction of hits in the main table. The staircase in
the top curves is due to interference in accessing the
shared L2 cache between core pairs.

We evaluated performance of two different configurations
of our lookup scheme. In the D16R scheme, the first 16 bits
are resolved via the lookup table; the D18R scheme uses 18
bits to index the lookup table, trading a potential reduction
in the length of the binary search with an increased memory
footprint of the lookup table.

4.1 DXR performance
Figure 3 shows the average lookup throughput as a func-

tion of the number of active execution threads. The pattern
of requests has a significant affect on cache effectiveness.
With random search keys (a worst-case situation) D18R goes
from 117 million lookups per second (Mlps) on a single core,
to 840 Mlps with all 8 cores active. Performance with re-
peated lookups for the same keys (in a sense a best-case
option, trying to mimic long lived flows) is almost twice as
fast, with 285 Mlps on one core, and 1600 Mlps on 8 cores.
On the particular system we are using, interference on the
use of L2 caches shared between core pairs produces the
staircase effect in the graph.

The cost of a lookup depends on the number of search
steps: matches in the lookup table are very fast, whereas
moving to the binary search phase makes things slower. This
is the reason why the D16R scheme is slower than D18R: as
shown by Table 2, D18R has a much higher hit rate in the
lookup table, which saves an expensive binary search.

Figure 4 indicates how the lookup time changes depending
on the number of steps in the binary search. A large number
of steps also means a larger chunk to search, which in turn
means a higher probability of a cache miss. This results in
a slightly superlinear dependency on the number of steps,
especially for random keys.

4.2 Comparison with other schemes
From [11] we can derive the relative performance of a num-

ber of proposed schemes (the absolute numbers refer to 1999
hardware). To relate these numbers with today’s systems,
we measured the performance of one of those algorithms –

 0

 20

 40

 60

 80

 100

 120

 1 2 3 4 5 6 7 8 9

n
a
n
o
s
e
c
o
n
d
s
 /
 l
o
o
k
u
p

Binary search iterations to completion

D18R, 1 core, random
D18R, 1 core, repeated
D18R, 8 cores, random

D18R, 8 cores, repeated

Figure 4: Average lookup time for D18R depending
on the number n of search steps. The use of mul-
tiple core adds about 15% overhead, on individual
lookups. The request pattern (random vs. repeated
keys) almost doubles the lookup time. We only re-
port the D18R numbers as there is no practical dif-
ference from the D16R case.

Number of binary search steps
0 1 2 3 4 5 6 7+

D18R 86.4 3.55 5.15 3.02 1.47 0.40 0.04 < .003
D16R 75.7 4.00 6.58 5.46 4.30 2.68 1.06 < .22

Table 2: Percentage of addresses that require ex-
actly n iterations in the binary search (n = 0 means
a direct match in the lookup table). D18R has a
10% higher hit rate in the lookup table, but at the
price of almost twice the memory (see Table 1).

the BSD radix tree – under the same conditions and hard-
ware used to test DXR. The results are shown in Figure 5.
The BSD code is about 40 times slower than DXR on 1 core,
and collapses as the number of cores increases. Considering
that [11] shows a factor of 5 between the BSD code and
the best of the other schemes, we believe that DXR is very
competitive in terms of performance compared to other pro-
posals for software lookups.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 1 2 3 4 5 6 7 8

M
ill

io
n
s
 I
P

v
4
 l
o
o
k
u
p
s
 /
 s

e
c
o
n
d

Active CPU cores

BSD, repeated
BSD, random

Figure 5: Average IPv4 lookup performance for the
BSD radix tree, in the same configurations used to
test DXR.

 0.1

 1

 10

 100

 8 10 12 14 16 18 20 22 24 26 28 30 32

A
v
e
ra

g
e
 u

p
d
a
te

 t
im

e
 (

m
s
)

Prefix length

D16R
D18R

Figure 6: Average update time per prefix length

4.3 Table updates
As a final experiment, we evaluated the time to update

the table when one prefix changes. Timescales are much
longer than for lookups, as it is often the case with schemes
optimized for lookups rather than updates. Figure 6 shows
that, as expected, short prefixes are more time consuming as
they require rebuilding a large number of chunks, whereas
long prefixes only affect a few entries in the range table.

5. CONCLUSION
We have presented DXR, a scheme for doing IPv4 lookups

in software at very high speed. Depending on the configura-
tion and query pattern, DXR achieves between 50 and 250
million lookups per second on 1 core, and scales almost lin-
early with the number of cores, exceeding one billion lookups
per second range when running on a commodity 8-core CPU.
This makes the algorithm a practical solution for software
routing in the 100 Gbit/s range of aggregate traffic, and is an
appropriate and timely match with some of recent work [9]
on software packet processing. Much of the performance of
DXR comes from the simplicity of the algorithm and a very
lean memory usage, which permits the working set to fit
easily in the cache of modern processors.

Our implementation [1] can be used as a drop-in re-
placement for the FreeBSD routing lookup, and it is easily
portable to other systems or environments, including dedi-
cated appliances.

Because of its nature, DXR pays a toll in terms of update
costs, but updating is infrequent, and can be done in parallel
with lookups. Our implementation already offsets some of
the per-prefix updating cost by batching multiple prefixes in
a single update, and should the circumstances require, can
rebuild from scratch all lookup structures corresponding to
a full sized BGP feed in less than 100 ms.

6. REFERENCES

[1] DXR: Direct/Range Routing Lookups home page.
http://www.nxlab.fer.hr/dxr/.

[2] T. cker Chiueh and P. Pradhan. High performance ip
routing table lookup using cpu caching. In
INFOCOM, pages 1421–1428, 1999.

[3] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink.
Small forwarding tables for fast routing lookups.

SIGCOMM Comput. Commun. Rev., 27(4):3–14, Oct.
1997.

[4] J. Fu, O. Hagsand, and G. Karlsson. Performance
evaluation and cache behavior of lc-trie for ip-address
lookup. In High Performance Switching and Routing,
2006 Workshop on, page 7 pp., 0-0 2006.

[5] P. Gupta, S. Lin, and N. McKeown. Routing lookups
in hardware at memory access speeds. In INFOCOM,
pages 1240–1247, 1998.

[6] S. Han, K. Jang, K. Park, and S. Moon. Packetshader:
a gpu-accelerated software router. In Proceedings of
the ACM SIGCOMM 2010 conference on SIGCOMM,
SIGCOMM ’10, pages 195–206. ACM, 2010.

[7] B. Lampson, V. Srinivasan, and G. Varghese. Ip
lookups using multiway and multicolumn search. In
IEEE/ACM Transactions on Networking, pages
324–334, 1998.

[8] S. Nilsson and G. Karlsson. Ip-address lookup using
lc-tries. IEEE Journal on Selected Areas in
Communications, 17(6):1083–1092, 1999.

[9] L. Rizzo. netmap: A novel framework for fast packet
i/o. In Usenix ATC 2012. Usenix, 2012.

[10] L. Rizzo. Revisiting network i/o apis: the netmap
framework. Communications of the ACM, 55(3):45–51,
2012.

[11] M. Ruiz-sanchez, E. W. Biersack, and W. Dabbous.
Survey and taxonomy of ip address lookup algorithms.
IEEE Network, 15:8–23, 2001.

[12] K. Sklower. A tree-based packet routing table for
berkeley unix. In USENIX Winter, pages 93–104,
1991.

[13] H. Song, F. Hao, M. S. Kodialam, and T. V.
Lakshman. Ipv6 lookups using distributed and load
balanced bloom filters for 100gbps core router line
cards. In INFOCOM, pages 2518–2526, 2009.

[14] V. Srinivasan and G. Varghese. Faster ip lookups
using controlled prefix expansion. In Proceedings of
the 1998 ACM SIGMETRICS joint international
conference on Measurement and modeling of computer
systems, SIGMETRICS ’98/PERFORMANCE ’98,
pages 1–10, New York, NY, USA, 1998. ACM.

[15] Z. A. Uzmi, M. Nebel, A. Tariq, S. Jawad, R. Chen,
A. Shaikh, J. Wang, and P. Francis. Smalta: practical
and near-optimal fib aggregation. In Proceedings of the
Seventh COnference on emerging Networking
EXperiments and Technologies, CoNEXT ’11, pages
29:1–29:12, New York, NY, USA, 2011. ACM.

[16] M. Waldvogel, G. Varghese, J. Turner, and
B. Plattner. Scalable high-speed prefix matching.
ACM Trans. Comput. Syst., 19(4):440–482, Nov. 2001.

