
E2: A Framework for NFV Applications

Shoumik Palkar ∗

UC Berkeley

sppalkar@berkeley.edu

Chang Lan∗

UC Berkeley

clan@eecs.berkeley.edu

Sangjin Han

UC Berkeley

sangjin@eecs.berkeley.edu

Keon Jang

Intel Labs

keon.jang@intel.com

Aurojit Panda

UC Berkeley

apanda@cs.berkeley.edu

Sylvia Ratnasamy

UC Berkeley

sylvia@eecs.berkeley.edu

Luigi Rizzo

Università di Pisa

rizzo@iet.unipi.it

Scott Shenker

UC Berkeley and ICSI

shenker@icsi.berkeley.edu

Abstract
By moving network appliance functionality from propri-

etary hardware to software, Network Function Virtualiza-

tion promises to bring the advantages of cloud computing to

network packet processing. However, the evolution of cloud

computing (particularly for data analytics) has greatly bene-

fited from application-independent methods for scaling and

placement that achieve high efficiency while relieving pro-

grammers of these burdens. NFV has no such general man-

agement solutions. In this paper, we present a scalable and

application-agnostic scheduling framework for packet pro-

cessing, and compare its performance to current approaches.

1. Introduction
The proliferation of network processing appliances (“mid-

dleboxes”) has been accompanied by a growing recognition

of the problems they bring, including expensive hardware

and complex management. This recognition led the network-

ing industry to launch a concerted effort towards Network

Function Virtualization (NFV) with the goal of bringing

greater openness and agility to network dataplanes [8]. In-

spired by the benefits of cloud computing, NFV advocates

moving Network Functions (NFs) out of dedicated physical

∗Joint first authors

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SOSP’15, October 04-07, 2015, Monterey, CA.
Copyright is held by the owner/author(s).
ACM 978-1-4503-3834-9/15/10.
http://dx.doi.org/10.1145/2815400.2815423

boxes into virtualized software applications that can be run

on commodity, general purpose processors. NFV has quickly

gained significant momentum with over 220 industry partic-

ipants, multiple proof-of-concept prototypes, and a number

of emerging product offerings [2, 9].

While this momentum is encouraging, a closer look “un-

der the hood” reveals a less rosy picture: NFV products and

prototypes tend to be merely virtualized software implemen-

tations of products that were previously offered as dedicated

hardware appliances. Thus, NFV is currently replacing, on a

one-to-one basis, monolithic hardware with monolithic soft-

ware. While this is a valuable first step – as it is expected

to lower capital costs and deployment barriers – it fails to

provide a coherent management solution for middleboxes.

Each software middlebox still comes as a closed implemen-

tation bundled with a custom management solution that ad-

dresses issues such as overload detection, load balancing,

elastic scaling, and fault-tolerance for that particular NF.

This leads to two problems. First, the operator must cope

with many NF-specific management systems. Second, NF

developers must invent their own solutions to common but

non-trivial problems such as dynamic scaling and fault tol-

erance; in the worst case this results in inadequate solutions

(e.g., solutions that do not scale well) and in the best case

results in vendors constantly reinventing the wheel.

Inspired by the success of data analytic frameworks (e.g.,

MapReduce, Hadoop and Spark), we argue that NFV needs

a framework, by which we mean a software environment

for packet-processing applications that implements general
techniques for common issues. Such issues include: place-

ment (which NF runs where), elastic scaling (adapting the

number of NF instances and balancing load across them),

service composition, resource isolation, fault-tolerance, en-

121

ergy management, monitoring, and so forth. Although we

are focusing on packet-processing applications, the above

are all systems issues, with some aiding NF development

(e.g., fault-tolerance), some NF management (e.g., dynamic

scaling) and others orchestration across NFs (e.g., place-

ment, service interconnection).

In this paper, we report on our efforts to build such a

framework, which we call Elastic Edge (E2). From a prac-

tical perspective, E2 brings two benefits: (i) it allows devel-

opers to rely on external framework-based mechanisms for

common tasks, freeing them to focus on their core applica-

tion logic and (ii) it simplifies the operator’s responsibilities,

as it both automates and consolidates common management

tasks. To our knowledge, no such framework for NFV exists

today, although several efforts explore individual aspects of

the problem (as we discuss in §9).

From a conceptual perspective, our contributions are also

twofold. First, we describe algorithms to automate the com-

mon tasks of placement, service interconnection, and dy-

namic scaling. In other work, we also address the issue of

fault-tolerance [46], with other issues such as performance

isolation, energy management and monitoring left for future

work. Second, we present a system architecture that simpli-

fies building, deploying and managing NFs. Our architec-

ture departs from the prevailing wisdom in that it blurs the

traditional distinction between applications and the network.

Typically one thinks of applications as having fully general

programming abstractions while the network has very lim-

ited abstractions (essentially that of a switch); this constrains

how functionality is partitioned between application and net-

work (even when network processing is implemented at end-

hosts [31, 39]) and encourages separate management mech-

anisms for each. In contrast, because we focus on more lim-

ited packet-processing applications and fully embrace soft-

ware switches, we can push richer programming abstractions

into the network layer.

More concretely, because of the above reasoning, we es-

chew the dominant software switch, OVS, in favor of a more

modular design inspired by Click [30]. We also depart from

the traditional SDN/NFV separation of concerns that uses

SDN to route packets between NFs and separately lets NFV

manage those NFs [17, 21, 40]; instead, in E2, a single con-

troller handles both the management and interconnection of

NFs based on a global system view that spans application

and network resources (e.g., core occupancy and number

of switch rules available). We show that E2’s flexibility to-

gether with its coordinated approach to management enables

significant performance optimizations; e.g., offering a 25-

41% reduction in CPU use through flexible system abstrac-

tions (§7.1) and a 1.5-4.5x improvement in overall system

throughput through better management decisions (§7.2).

2. Context and Assumptions
We now provide a motivating context for the deployment

of a framework such as E2, describe the form of hardware

infrastructure we assume, and briefly sketch the E2 design.

2.1 Motivation: A Scale-Out Central Office
We present a concrete deployment context that carriers cite

as an attractive target for NFV: a carrier network’s broad-

band and cellular edge, as embodied in their Central Of-
fices (COs) [1]. A CO is a facility commonly located in

a metropolitan area to which residential and business lines

connect. Carriers hope to use NFV to transform their COs

to more closely resemble modern datacenters so they can

achieve: a uniform architecture based on commodity hard-

ware, efficiency through statistical multiplexing, centralized

management across CO locations, and the flexibility and

portability of software services. Carriers cite two reasons for

overhauling CO designs [1].

First, the capital and operational expenses incurred by a

carrier’s COs are very high. This is because there are many

COs, each of non-trivial scale; e.g., AT&T reports 5,000

CO locations in the US alone, with 10-100K subscribers per

CO. These COs contain specialized devices such as Broad-
band Network Gateways (BNGs) [3, 4] that connect broad-

band users to the carrier’s IP backbone, and Evolved Packet
Core (EPC) gateways that connect cellular users to the IP

backbone. These are standalone devices with proprietary in-

ternals and vendor-specific management APIs.1 NFV-based

COs would enable operators to utilize commodity hardware

while a framework such as E2 would provide a unified man-

agement system.

Secondly, carriers are seeking new business models based

on opening up their infrastructure to 3rd party services.

Hosting services in their COs would enable carriers to ex-

ploit their physical proximity to users, but this is difficult

when new features require custom hardware; an NFV-based

CO design would address this difficulty. In fact, if carriers

succeed in opening up their infrastructure, then one might

view the network as simply an extension (closer to the user)

of existing cloud infrastructure in which case the transition

to NFV becomes necessary for portability between cloud

and network infrastructures.

Carrier incentives aside, we note that a CO’s workload
is ideally suited to NFV’s software-centric approach. A pe-

rusal of broadband standards [7] and BNG datasheets [4] re-

veals that COs currently support a range of higher-level traf-

fic processing functions – e.g., content caching, Deep Packet

Inspection (DPI), parental controls, WAN and application

acceleration, traffic scrubbing for DDoS prevention and en-

cryption – in addition to traditional functions for firewalls,

IPTV multicast, DHCP, VPN, Hierarchical QoS, and NAT.

1Standardization efforts such as OpenFlow target L2 and L3 forward-

ing devices and do not address the complexity of managing these special-

ized systems or middleboxes more generally [44, 47].

122

K external ports N-K internal ports

Servers

N-port
switch

Figure 1: Hardware infrastructure that E2 manages. We show three
examples of possible forwarding paths through the cluster, includ-
ing one that involves no server.

As CO workloads grow in complexity and diversity, so do

the benefits of transitioning to general-purpose infrastruc-

ture, and the need for a unified and application-independent

approach to dealing with common management tasks.

Thus, E2 addresses the question of how you efficiently

manage a diverse set of packet processing applications with-

out knowing much about their internal implementation. “Ef-

ficient” here means both that the management system intro-

duces little additional overhead, and that it enables high uti-

lization of system resources.

2.2 Hardware Infrastructure
E2 is designed for a hardware infrastructure composed of

general-purpose servers (residing in racks) interconnected

by commodity switches. As shown in Figure 1, we assume

a fabric of commodity switches with N ports, of which K
are dedicated to be ‘externally’ facing (i.e., carrying traffic

to/from the E2 cluster) while the remaining N -K intercon-

nect the servers running NFV services. This switch fabric

can be a single switch, or multiple switches interconnected

with standard non-blocking topologies. Our prototype uses

a single switch but we expect our design to scale to larger

fabrics.

E2 is responsible for managing system resources and

hence we briefly elaborate on the main hardware constraints

it must accommodate. First, E2 must avoid over-booking the

CPU and NIC resources at the servers. Second, E2 must

avoid overloading the switch capacity by unnecessarily plac-

ing functions on different servers; e.g., a flow processed by

functions running at two servers will consume 50% more

switching capacity than if the two functions were placed on

the same server (Figure 1). Third, since commodity switches

offer relatively small flow tables that can be slow to update,

E2 must avoid excessive use of the flow table at the switch

(see §5.3).

Our current prototype has only a single rack. We presume,

based on current packet processing rates and CO traffic vol-

umes, that a CO can be serviced by relatively small clus-

ter sizes (1-10 racks); while we believe that our architecture

will easily scale to such numbers, we leave an experimental

demonstration of this to future work.

2.3 Design Overview
Before presenting E2 in detail in the following sections, we

first provide a brief overview.

E2 Context. We assume that COs reside within an overall

network architecture in which a global SDN controller is

given (by the operator) a set of network-wide policies to

implement. The SDN controller is responsible for translating

these network-wide policies into instructions for each CO,

and the E2 cluster within each CO is responsible for carrying

out these instructions.The E2 cluster is managed by an E2

Manager, which is responsible for communicating with the

global SDN controller.

E2 Interface. Akin to several recent network management

systems [12, 15–17, 20, 37, 49], E2 provides a declarative

interface through which the global SDN controller tells each

E2 cluster how traffic should be processed. It does so by

specifying a set of policy statements that we call pipelets.

Each pipelet defines a traffic class and a corresponding di-

rected acyclic graph (DAG) that captures how this traffic

class should be processed by NFs. A traffic class here refers

to a subset of the input traffic; the DAG is composed of nodes

which represent NFs (or external ports of the switch) and

edges which describe the type of traffic (e.g., ‘port 80’) that

should reach the downstream NF. Figure 2 shows a simpli-

fied example of a pipelet.

Thus, the global SDN controller hands the E2 Manager a

set of pipelets. The E2 Manager is responsible for executing

these pipelets on the E2 cluster as described below, while

communicating status information – e.g., overall load or

hardware failure – back to the global controller.

In addition to policy, E2 takes two forms of external

input: (i) a NF description enumerating any NF-specific

constraints (e.g., whether the NF can be replicated across

servers), configuration directives (e.g., number and type of

ports), resource requirements (e.g., per-core throughput),

and (ii) a hardware description that enumerates switch and

server capabilities (e.g. number of cores, flow table size).

E2 Internal Operation. Pipelets dictate what traffic should

be processed by which NFs, but not where or how this pro-

cessing occurs on the physical cluster. E2 must implement

the policy directives expressed by the pipelets while re-

specting NF and hardware constraints and capabilities, and

it does so with three components, activated in response to

configuration requests or overload indications. (i) The scal-
ing component (§5.3) computes the number of NF instances
needed to handle the estimated traffic demand, and then dy-

namically adapts this number in response to varying traffic

load. It generates an instance graph, or iGraph, reflecting

the actual number of instances required for each NF men-

tioned in the set of pipelets, and how traffic is spread across

these instances. (ii) The placement component (§5.1) trans-

lates the iGraph into an assignment of NF instances to spe-

cific servers. (iii) The interconnection component (§5.2) con-

123

IDS

Traffic
Normalizer

Network
Monitor

Web Cache

IDS.safe && !(dst port 80)

Figure 2: An example pipelet. Input traffic is first sent to an IDS;
traffic deemed safe by the IDS is passed to a Web Cache if it’s
destined for TCP port 80 and to a Network Monitor otherwise.
Traffic that the IDS finds unsafe is passed to a Traffic Normalizer;
all traffic leaving the Traffic Normalizer or the Web Cache are also
passed to the Network Monitor.

figures the network (including network components at the

servers) to steer traffic across appropriate NF instances.

In the following sections we describe E2’s system archi-

tecture (§3), its dataplane design (§4), and its control plane

design (§5). We present the implementation (§6) and evalua-

tion (§7) of our E2 prototype then discuss related work (§8)

before concluding in §9.

3. E2 System Architecture
We now describe E2’s API, inputs, and system components.

3.1 System API
As mentioned in §2, an operator expresses her policies via a

collection of pipelets, each describing how a particular traffic
class should be processed. This formulation is declarative, so

operators can generate pipelets without detailed knowledge

of per-site infrastructure or NF implementations. The neces-

sary details will instead be captured in the NF and hardware

descriptions. We now elaborate on how we express pipelets.

Additional detail on the policy description language we use

to express pipelets can be found in the Appendix.

Each pipelet defines a traffic class and a corresponding

directed acyclic graph (DAG) that captures how this traffic

class should be processed by NFs. In our current implemen-

tation, we define traffic classes in terms of packet header

fields and physical ports on the switch; for example, one

might identify traffic from a particular subscriber via the

physical port, or traffic destined for another provider through

address prefixes.

A node in the pipelet’s DAG represents a NF or a physical

port on the switch, and edges describe the traffic between

nodes. Edges may be annotated with one or more traffic

filters. A filter is a boolean expression that defines what

subset of the traffic from the source node should reach the

destination node.

Filters can refer to both, the contents of the packet it-

self (e.g., header fields) and to semantic information asso-

ciated with the packet. For example, the characterization of

traffic as “safe” or “unsafe” in Figure 2 represents seman-

tic information inferred by the upstream IDS NF. Filters can

thus be viewed as composed of general attribute-value pairs,

where attributes can be direct (defined on a packet’s con-

tents) or derived (capturing higher-level semantics exposed

by network applications). A packet follows an edge only if

it matches all of the traffic filters on the edge. Note that a

traffic filter only defines which traffic flows between func-

tions; E2’s interconnection component (§5.2) addresses how
this traffic is identified and forwarded across NF ports.

In addition to traffic filters, an edge is optionally anno-

tated with an estimate of the expected rate of such traffic.

E2’s placement function uses this rate estimate to derive its

initial allocation of resources; this estimate can be approx-

imate or even absent because E2’s dynamic scaling tech-

niques will dynamically adapt resource allocations to vary-

ing load.

3.2 System Inputs
In addition to pipelets, E2 takes an NF description that

guides the framework in configuring each NF, and a hard-
ware description that tells the framework what hardware re-

sources are available for use. We describe each in turn.

NF descriptions. E2 uses the following pieces of informa-

tion for each NF. We envisage that this information (except

the last one) will be provided by NF developers.

(1) Native vs. Legacy. E2 exports an optional API that al-

low NFs to leverage performance optimizations (§4). NFs

that use this API are considered “native”, in contrast to un-

modified “legacy” NFs running on the raw socket interface

provided by the OS; we discuss the native API further in §7.

(2) Attribute-Method bindings. Each derived attribute has an

associated method for associating packets with their attribute

values. Our E2 prototype supports two forms of methods:

ports and per-packet metadata (§4).

With the port method, all traffic with an attribute value

will be seen through a particular (virtual or physical) port.

Since a port is associated with a specific value for an at-

tribute, ports are well-suited for “coarse-grained” attributes

that take on a small number of well-known values. E.g., in

Figure 2, if the IDS defines the method associated with the

“safe” attribute to be “port,” all safe traffic exits the IDS

through one virtual port, and all unsafe traffic through an-

other. Legacy applications that cannot leverage the metadata

method described below fit nicely into this model.

The metadata method is available as a native API. Con-

ceptually, one can think of metadata as a per-packet anno-

tation [30] or tag [17] that stores the attribute-value pair; §4

describes how our system implements metadata using a cus-

tom header. Metadata is well-suited for attributes that take

many possible values; e.g., tagging packets with the URL

associated with a flow (versus using a port per unique URL).

(3) Scaling constraints tell E2 whether the application can be

scaled across servers/cores or not, thus allowing the frame-

work to react appropriately on overload (§5.3).

124

�� ��

�����	
�� �
��

�
��

�
�

���������

��� �
���	
��	���

��������
�����������
	��

Figure 3: The overall E2 system architecture.

(4) Affinity constraints. For NFs that scale across servers,

the affinity constraints tell the framework how to split traf-

fic across NF instances. Many NFs perform stateful opera-

tions on individual flows and flow aggregates. The affinity

constraints define the traffic aggregates the NF acts on (e.g.,
“all packets with a particular TCP port,” or “all packets in

a flow”), and the framework ensures that packets belonging

to the same aggregate are consistently delivered to the same

NF instance. Our prototype accepts affinity constraints de-

fined in terms of the 5-tuple with wildcards.

(5) NF performance. This is an estimate of the per-core, per-

GHz traffic rate that the NF can sustain2. This is optional

information that E2’s placement function uses to derive a

closer-to-target initial allocation of cores per NF.

Hardware description. In our current prototype, the hard-

ware constraints that E2 considers when making operational

decisions include: (1) the number of cores (and speed) and

the network I/O bandwidth per server, (2) the number of

switch ports, (3) the number of entries in the switch flow ta-

ble, and (4) the set of available switch actions. Our hardware

description thus includes this information. We leave to fu-

ture work the question of whether and how to exploit richer

models – e.g., that consider resources such as the memory

or CPU cache at servers, availability of GPUs or specialized

accelerators [24], programmable switches [15], and so forth.

3.3 System Components
Figure 3 shows the three main system components in E2:

the E2 Manager orchestrates overall operation of the cluster,

a Server Agent manages operation within each server, and

the E2 Dataplane (E2D) acts as a software traffic processing

layer that underlies the NFs at each server. The E2 Manager

interfaces with the hardware switch(es) through standard

switch APIs [6, 14, 36] and with the Server Agents.

4. The E2 Dataplane, E2D
In the following subsections we describe the design of the E2

Dataplane (E2D). The goal of E2D is to provide flexible yet

efficient “plumbing” across the NF instances in the pGraph.

2Since the performance of NFs vary based on server hardware and

traffic characteristics, we expect these estimates will be provided by the

network operator (based on profiling the NF in their environment) rather

than by the NF vendor.

4.1 Rationale
Our E2D implementation is based on SoftNIC [23], a high-

performance, programmable software switch that allows ar-

bitrary packet processing modules to be dynamically config-

ured as a data flow graph, in a similar manner to the Click

modular router [30].

While the Click-style approach is widely used in various

academic and commercial contexts, the de-facto approach

to traffic management on servers uses the Open vSwitch

(OVS) and the OpenFlow interface it exports. OVS is built

on the abstraction of a conventional hardware switch: it is

internally organized as a pipeline of tables that store ‘match-

action’ rules with matches defined on packet header fields

plus some limited support for counters and internal state.

Given the widespread adoption of OVS, it is reasonable to

ask why we adopt a different approach. In a nutshell, it is

because NFV does not share many of the design considera-

tions that (at least historically) have driven the architecture

of OVS/Openflow and hence the latter may be unnecessarily

restrictive or even at odds with our needs.

More specifically, OVS evolved to support “network

virtualization platforms” (NVPs) in multi-tenant datacen-

ters [31]. Datacenter operators use NVPs to create multiple

virtual networks, each with independent topologies and ad-

dressing architectures, over the same physical network; this

enables (for example) tenants to ‘cut-paste’ a network con-

figuration from their local enterprise to a cloud environment.

The primary operation that NVPs require on the dataplane

is the emulation of a packet’s traversal through a series of

switches in the virtual topology, and thus OVS has focused

on fast lookups on OpenFlow tables; e.g., using multiple lay-

ers of caching internally [39] and limited actions.

NFV does not face this challenge. Instead, since most

cycles will likely be consumed in NFs, we are more inter-

ested in performance optimizations that improve the effi-

ciency of NFs (e.g., our native APIs below). Thus, rather

than work to adapt OVS to NFV contexts, we chose to ex-

plore a Click-inspired dataflow design more suited to our

needs. This choice allowed us to easily implement various

performance optimizations (§7) and functions in support of

dynamic scaling (§5.3) and service interconnection (§5.2).

4.2 SoftNIC
SoftNIC exposes virtual NIC ports (vports) to NF instances;

vports virtualize the hardware NIC ports (pports) for vir-

tualized NFs. Between vports and pports, SoftNIC allows

arbitrary packet processing modules to be configured as a

data flow graph, in a manner similar to the Click modular

router [30]. This modularity and extensibility differentiate

SoftNIC from OVS, where expressiveness and functionality

are limited by the flow-table semantics and predefined ac-

tions of OpenFlow.

SoftNIC achieves high performance by building on recent

techniques for efficient software packet processing. Specifi-

125

cally: SoftNIC uses Intel DPDK [27] for low-overhead I/O to

hardware NICs and uses pervasive batch processing within

the pipeline to amortize per-packet processing costs. In ad-

dition, SoftNIC runs on a small number of dedicated pro-

cessor cores for high throughput (by better utilizing the

CPU cache) and sub-microsecond latency/jitter (by elimi-

nating context switching cost). The SoftNIC core(s) con-

tinuously polls each physical and virtual port for packets.

Packets are processed from one NF to another using a push-

to-completion model; once a packet is read from a port, it

is run through a series of modules (e.g. classification, rate

limiting, etc.) until it reaches a destination port.

In our experiments with the E2 prototype (§7), we dedi-

cate only one core to E2D/SoftNIC as we find a single core

was sufficient to handle the network capacity of our testbed;

[23] demonstrates SoftNIC’s scalability to 40 Gbps per core.

4.3 Extending SoftNIC for E2D
We extend SoftNIC in the following three ways. First, we

implement a number of modules tailored for E2D includ-

ing modules for load monitoring, flow tracking, load balanc-

ing, packet classification, and tunneling across NFs. These

modules are utilized to implement E2’s components for NF

placement, interconnection, and dynamic scaling, as will be

discussed in the rest of this paper.

Second, as mentioned earlier, E2D provides a native API

that NFs can leverage to achieve better system-wide perfor-

mance and modularity. This native API provides support for:

zero-copy packet transfer over vports for high throughput

communication between E2D and NFs, and rich message ab-

stractions which allow NFs to go beyond traditional packet-

based communication. Examples of rich messages include:

(i) reconstructed TCP bytestreams (to avoid the redundant

overhead at each NF), (ii) per-packet metadata tags that ac-

company the packet even across NF boundaries, and (iii)

inter-NF signals (e.g., a notification to block traffic from an

IPS to a firewall).

The richer cross-NF communication enables not only var-

ious performance optimizations but also better NF design by

allowing modular functions – rather than full-blown NFs–

from different vendors to be combined and reused in a flex-

ible yet efficient manner. We discuss and evaluate the native

API further in §7.

Lastly, E2D extends SoftNIC with a control API exposed

to E2’s Server Agent, allowing it to: (i) dynamically cre-

ate/destroy vports for NF instances, (ii) add/remove modules

in E2D’s packet processing pipeline, stitching NFs together

both within and across servers, and (iii) receive notifications

of NF overload or failure from the E2D (potentially trigger-

ing scaling or recovery mechanisms).

5. The E2 Control Plane
The E2 control plane is in charge of (i) placement (instan-

tiating the pipelets on servers), (ii) interconnection (setting

(a) Original pGraph (b) iGraph with split NF B

(c) iGraph with split NF A and B (d) Optimized iGraph

A B A

B

B

B

B

A

A

A

A

B

B

A

A

A

A

B

B

Figure 4: Transformations of a pGraph (a) into an iGraph (b, c, d).

up and configuring the interconnections between NFs), (iii)

scaling (dynamically adapting the placement decisions de-

pending on load variations), and (iv) ensuring affinity con-

straints of NFs.

5.1 NF Placement
The initial placement of NFs involves five steps:

Step 1: Merging pipelets into a single policy graph. E2

first combines the set of input pipelets into a single policy

graph, or pGraph; the pGraph is simply the union of the

individual pipelets with one node for each NF and edges

copied from the individual pipelets.

Step 2: Sizing. Next, E2 uses the initial estimate of the

load on a NF (sum of all incoming traffic streams), and

its per-core capacity from the NF description, to determine

how many instances (running on separate cores) should be

allocated to it. The load and capacity estimates need not be

accurate; our goal is merely to find a reasonable starting

point for system bootstrapping. Dynamically adapting to

actual load is discussed later in this section.

Step 3: Converting the pGraph to an iGraph. This step

transforms the pGraph into the “instance” graph, or iGraph,

in which each node represents an instance of a NF. Split-

ting a node involves rewiring its input and output edges and

Figure 4 shows some possible cases. In the general case, as

shown in Figure 4(b) and 4(c), splitting a node requires dis-

tributing the input traffic across all its instances in a manner

that respects all affinity constraints and generating the cor-

responding edge filters. As an example, NF B in Figure 4(b)

might require traffic with the same 5-tuple go to the same

instance, hence E2 inserts a filter that hashes traffic from A

on the 5-tuple and splits it evenly towards B’s instances.

When splitting multiple adjacent nodes, the affinity con-

straints may permit optimizations in the distribute stages, as

depicted in Figure 4(d). In this case, node B from the pre-

vious example is preceded by node A that groups traffic by

source IP addresses. If the affinity constraint for A already

126

satisfies the affinity constraint for B, E2 does not need to re-

classify the outputs from A’s instances, and instead can cre-

ate direct connections as in Figure 4(d). By minimizing the

number of edges between NF instances, instance placement

becomes more efficient, as we explain below.

Step 4: Instance placement. The next step is to map each

NF instance to a particular server. The goal is to minimize

inter-server traffic for two reasons: (i) software forward-

ing within a single server incurs lower delay and consumes

fewer processor cycles than going through the NICs [19, 43]

and (ii) the link bandwidth between servers and the switch

is a limited resource. Hence, we treat instance placement as

an optimization problem to minimize the amount of traffic

traversing the switch. This can be modeled as a graph par-

tition problem which is NP-hard and hence we resort to an

iterative local searching algorithm, in a modified form of the

classic Kernighan-Lin heuristic [28].

The algorithm works as follows: we begin with a valid

solution that is obtained by bin-packing vertices into parti-

tions (servers) based on a depth-first search on the iGraph;

then in each iteration, we swap a pair of vertices from two

different partitions. The pair selected for a swap is the one

that leads to the greatest reduction in cross-partition traffic.

These iterations continue until no further improvement can

be made. This provides an initial placement of NF instances

in O(n2 lg n) time where n is the number of NF instances.

In addition, we must consider incremental placement as

NF instances are added to the iGraph. While the above al-

gorithm is already incremental in nature, our strategy of mi-

gration avoidance (§5.4) imposes that we do not swap an

existing NF instance with a new one. Hence, the incremental

placement is much simpler: we consider all possible parti-

tions where the new instance may be placed, and choose the

one that will incur the least cross-partition traffic by simply

enumerating all the neighboring instances of the new NF in-

stance. Thus the complexity of our incremental placement

algorithm is O(n), where n is the number of NF instances.

Step 5: Offloading to the hardware switch. Today’s com-

modity switch ASICs implement various low-level fea-

tures, such as L2/L3-forwarding, VLAN/tunneling, and QoS

packet scheduling. This opens the possibility of offloading

these functions to hardware when they appear on the pol-

icy graph, similar to Dragonet [48] which offloads functions

from the end-host network stack to NIC hardware). On the

other hand, offloading requires that traffic traverse physical

links and consume other hardware resources (table entries,

switch ports, queues) that are also limited, so offloading is

not always possible. To reduce complexity in the placement

decisions, E2 uses an opportunistic approach: a NF is con-

sidered as a candidate for offloading to the switch only if,

at the end of the placement, that NFs is adjacent to a switch

port, and the switch has available resources to run it. E2 does

not preclude the use of specialized hardware accelerators to

��� ����	
�����
≠ ��

���
����
��
�����

���

���
�������������
�����

�����
����

���

���
 !!���
�������
�����������

"#�
����������

Figure 5: E2 converts edge annotations on an iGraph (a) into
output ports (b) that the applications write to, and then adds traffic
filters that the E2D implements (c).

implement NFs, though we have not explored the issue in

the current prototype.

5.2 Service Interconnection
Recall that edges in the pGraph (and by extension, iGraph)

are annotated with filters. Service interconnection uses these

annotations to steer traffic between NF instances in three

stages.

Instantiating NFs’ ports. The NF description specifies how

many output ports are used by a NF and which traffic

attributes are associated with each port. E2D instantiates

vports accordingly as per the NF description and the iGraph.

For example, Fig. 5(b) shows an IDS instance with two

vports, which output “safe” and “unsafe” traffic respectively.

Adding traffic filters. An edge may require (as specified by

the edge’s filters) only a subset of the traffic generated by the

NF instance it is attached to. In this case, E2 will insert an

additional classification stage, implemented by the E2D, to

ensure that the edge only receives traffic matching the edge

filters. Figure 5(c) illustrates an example where “safe” traf-

fic is further classified based on the destination port number.

While E2’s classifier currently implements BPF filtering [35]

on packet header fields and metadata tags, we note that it

can be extended beyond traditional filtering to (for example)

filter packets based on CPU utilization or the active/standby

status of NF instances. To disambiguate traffic leaving ‘man-

gling’ NFs that rewrite key header fields (e.g., NAT), the

E2D layer dynamically creates disambiguating packet steer-

ing rules based on the remaining header fields. 3

Configuring the switch and the E2D. After these steps,

E2 must configure the switch and E2D to attach NF ports

to edges and instantiate the necessary filters. Edges that are

local to one server are implemented by the E2D alone. Edges

between servers also flow through the E2D which routes

them to physical NICs, possibly using tunneling to multiplex

several edges into available NICs. Packet encapsulation for

tunneling does not cause MTU issues, as commodity NICs

and switches already support jumbo frames.

3Our approach to handling mangling NFs is enabled by the ability to

inject code inline in the E2D layer. This allows us to avoid the complexity

and inefficiency of solutions based on legacy virtual switches such as OVS;

these prior solutions involve creating multiple instances of the mangling

NF, one for each downstream path in the policy graph [20] and invoke the

central controller for each new flow arrival [17, 20].

127

5.3 Dynamic Scaling
The initial placement decisions are based on estimates of

traffic and per-core performance, both of which are imper-

fect and may change over time. Hence, we need solutions

for dynamically scaling in the face of changing loads; in

particular we must find ways to split the load over several

NF instances when a single instance is no longer sufficient.

We do not present the methods for contraction when under-

loaded, but these are similar in spirit. We provide hooks for

NFs to report on their instantaneous load, and the E2D itself

detects overloads based on queues and processing delays.

We say we split an instance when we redistribute its load

to two or more instances (one of which is the previous in-

stance) in response to an overload. This involves placing the

new instances, setting up new interconnection state (as de-

scribed previously in this section), and must consider the

affinity requirements of flows (discussed later in this sec-

tion), so it is not to be done lightly.

To implement splitting, when a node signals overload

the Server Agent notifies the E2 Manager, which uses the

incremental algorithm described in §5.1 to place the NF

instances. The remaining step is to correctly split incoming

traffic across the new and old instances; we address this next.

5.4 Migration Avoidance for Flow Affinity
Most middleboxes are stateful and require affinity, where

traffic for a given flow must reach the instance that holds

that flow’s state. In such cases, splitting a NF’s instance

(and correspondingly, input traffic) requires extra measures

to preserve affinity.

Prior solutions that maintain affinity either depend on

state migration techniques (moving the relevant state from

one instance to another), which is both expensive and in-

compatible with legacy applications [21], or require large

rule sets in hardware switches [41]; we discuss these solu-

tions later in §7.

We instead develop a novel migration avoidance strategy

in which the hardware and software switch act in concert to

maintain affinity. Our scheme does not require state migra-

tion, is designed to minimize the number of flow table entries

used on the hardware switch to pass traffic to NF instances,

and is based on the following assumptions:

• each flow f can be mapped (for instance, through a hash

function applied to relevant header fields) to a flow ID

H(f), defined as an integer in the interval R = [0, 2N);

• the hardware switch can compute the flow ID, and can

match arbitrary ranges in R with a modest number

of rules. Even TCAM-based switches, without a native

range filter, require fewer than 2N rules for this;

• each NF instance is associated with one subrange of the

interval R;

������

"��

"��

������

"��

"��

������

"��

"��

 	
 	

(a) (b) (c)

Figure 6: (a) Flows enter a single NF instance. (b) Migration
avoidance partitions the range of Flow IDs and punts new flows
to a new replica using the E2D. Existing flows are routed to the
same instance. (c) Once enough flows expire, E2 installs steering
rules in the switch.

• the E2D on each server can track individual, active flows

that each NF is currently handling. 4 We call Fold(A) the

current set of flows handled by some NF A.

When an iGraph is initially mapped onto E2, each NF in-

stance A may have a corresponding range filter [X,Y) → A
installed in the E2D layer or in the hardware switch. When

splitting A into A and A’, we must partition the range [X,Y),
but keep sending flows in Fold(A) to A until they naturally

terminate.

Strawman approach. This can be achieved by replacing the

filter [X,Y) → A with two filters

[X,M) → A, [M,Y) → A′

and higher priority filters (“exceptions”) to preserve affinity:

∀f : f ∈ Fold(A) ∧H(f) ∈ [M,Y) : f → A

The number of exceptions can be very large. If the switch has

small filtering tables (hardware switches typically have only

a few thousand entries), we can reduce the range [M,Y)
to keep the number of exceptions small, but this causes an

uneven traffic split. This problem arises when the filters must

be installed on a hardware switch, and A and A’ reside on

different servers.

Our solution To handle this case efficiently, our migration
avoidance algorithm uses the following strategy (illustrated

in Figure 6) :

• Opon splitting, the range filter [X,Y) on the hardware

switch is initially unchanged, and the new filters (two

new ranges plus exceptions) are installed in the E2D of

the server that hosts A;

• As flows in Fold(A) gradually terminate, the correspond-

ing exception rules can be removed;

• When the number of exceptions drops below some

threshold, the new ranges and remaining exceptions

are pushed to the switch, replacing the original rule

[X,Y) → A.

4The NF description indicates how to aggregate traffic into flows (i.e.,

the same subset of header fields used to compute the flow ID).

128

By temporarily leveraging the capabilities of the E2D, mi-

gration avoidance achieves load distribution without the

complexity of state migration and with efficient use of

switch resources. The trade-off is the additional latency to

new flows being punted between servers (but this overhead

is small and for a short period of time) and some additional

switch bandwidth (again, for a short duration) – we quantify

these overheads in §7.

6. Prototype Implementation
Our E2 implementation consists of the E2 Manager, the

Server Agent, and the E2D. The E2 Manager is implemented

in F# and connects to the switch and each server using an

out-of-band control network. It interfaces with the switch

via an OpenFlow-like API to program the flow table, which

is used to load balance traffic and route packets between

servers. The E2 Manager runs our placement algorithm (§5)

and accordingly allocates a subset of nodes (i.e., NF in-

stances) from the iGraph to each server and instructs the

Server Agent to allocate cores for the NFs it has been as-

signed, to execute the the NFs, to interface with the E2D

to allocate ports, create and compose processing modules in

SoftNIC, and to set up paths between NFs.

The Server Agent is implemented in Python and runs as a

Python daemon on each server in the E2 cluster. The Server

Agent acts as a shim layer between the E2 Manager and its

local E2D, and it simply executes the instructions passed by

the E2 Manager.

The E2D is built on SoftNIC (§4). Our E2D contains sev-

eral SoftNIC modules which the Server Agent configures for

service interconnection and load balancing. Specifically, we

have implemented a match/action module for packet meta-

data, a module for tagging and untagging packets with tun-

neling headers to route between servers, and a steering mod-

ule which implements E2D’s part in migration avoidance.

The E2D implements the native API discussed in §4.3; for

legacy NFs, E2D creates regular Linux network devices.

7. Evaluation

Prototype. Our E2 prototype uses an Intel FM6000 Seacliff

Trail Switch with 48 10 Gbps ports and 2,048 flow table

entries. We connect four servers to the switch, each with one

10 Gbps link. One server uses the Intel Xeon E5-2680 v2

CPU with 10 cores in each of 2 sockets and the remaining

use the Intel Xeon E5-2650 v2 CPU with 8 cores in each

of 2 sockets, for a total of 68 cores running at 2.6 GHz. On

each server, we dedicate one core to run the E2D layer. The

E2 Manager runs on a standalone server that connects to

each server and to the management port of the switch on

a separate 1 Gbps control network.

We start with microbenchmarks that evaluate E2’s data

plane (§7.1), then evaluate E2’s control plane techniques

(§7.2) and finally evaluate overall system performance with

E2 (§7.3).

Experimental Setup. We evaluate our design choices using

the above E2 prototype. We connect a traffic generator to

external ports on our switch with four 10 G links. We use

a server with four 10G NICs and two Intel Xeon E5-2680

v2 CPUs as a traffic generator. We implemented the traffic

generator to act as the traffic source and sink. Unless stated

otherwise, we present results for a traffic workload of all

minimum-sized 60B Ethernet packets.

7.1 E2D: Data Plane Performance
We show that E2D introduces little overhead and that its

native APIs enable valuable performance improvements.

E2D Overhead. We evaluate the overhead that E2D intro-

duces with a simple forwarding test, where packets are gen-

erated by an NF and ‘looped back’ by the switch to the same

NF. In this setup, packets traverse the E2D layer twice (NF

→ switch and switch→NF directions). We record an aver-

age latency of 4.91 μs.
We compare this result with a scenario where the NF is

directly implemented with DPDK (recall that SoftNIC and

hence E2D build on top of DPDK), in order to rule out

the overhead of E2D. In this case the average latency was

4.61 μs, indicating that E2D incurs 0.3 μs delay (or 0.15 μs
for each direction). Given that a typical end-to-end latency

requirement within a CO is 1 ms5, we believe that this la-

tency overhead is insignificant.

In terms of throughput, forwarding through E2D on a

single core fully saturates the server’s 10 Gbps link as ex-

pected [23, 27].

The low latency and high throughput that E2D achieves

is thanks to its use of SoftNIC/DPDK. Our results merely

show that the baseline overhead that E2D/SoftNIC adds

to its underlying DPDK is minimal; more complex packet

processing at NFs would, of course, result in proportionally

higher delays and lower throughput.

E2D Native API. Recall that E2’s native API enables per-

formance optimizations through its support for zero-copy

vports and rich messages. We use the latter to implement

two optimizations: (i) bytestream vports that allow the cost

of TCP session reconstruction to be amortized across NFs

and, (ii) packet metadata tags that eliminate redundant work

by allowing semantic information computed by one NF to

be shared with the E2D or other NFs. We now quantify the

performance benefits due to these optimizations: zero-copy

vports, bytestream vports, metadata.

Zero-copy vports. We measure the latency and throughput

between two NFs on a single server (since the native API

does nothing to optimize communication between servers).

Table 1 compares the average latency and throughput of the

legacy and native APIs along this NF → E2D → NF path.

We see that our native API reduces the latency of NF-to-

NF communication by over 2.5x on average and increases

5From discussion with carriers and NF vendors.

129

Path
NF → E2D→ NF

Latency
(μs)

Gbps
(1500B)

Mpps
(64B)

Legacy API 3.2 7.437 0.929

Native Zero-Copy API 1.214 187.515 15.24

Table 1: Latency and throughput between NFs on a single server
using E2’s legacy vs. native API. Legacy NFs use the Linux raw
socket interface.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

ByteStream

Library

GHz per Gb traffic

TCP SIG HTTP RE

Figure 7: Comparison of CPU cycles for three DPI NFs, without
and with bytestream vports. The both cases use the native API.

throughput by over 26x; this improvement is largely due to

zero-copy vports (§4) and the fact that legacy NFs incur OS-

induced overheads due to packet copies and interrupts. Our

native APIs matches the performance of frameworks such as

DPDK [27] and netmap [42].

Bytestream vports. TCP session reconstruction, which in-

volves packet parsing, flow state tracking, and TCP seg-

ment reassembly, is a common operation required by most

DPI-based NFs. Hence, when there are multiple DPI NFs

in a pipeline, repeatedly performing TCP reconstruction can

waste processing cycles.

We evaluate the performance benefits of bytestream

vports using a pipeline of three simple DPI NFs: (i) SIG

implements signature matching with the Aho-Corasick

algorithm, (ii) HTTP implements an HTTP parser, and

(iii) RE implements redundancy elimination using Rabin

fingerprinting. These represent an IDS, URL-based filtering,

and a WAN optimizer, respectively. The Library case in

Fig. 7 represents a baseline, where each NF independently

performs TCP reconstruction over received packets with our

common TCP library. In the ByteStream case, we dedicate

a separate NF (TCP) to perform TCP reconstruction and

produce metadata (TCP state changes and reassembly

anomalies) and reassembled bytestream messages for the

three downstream NFs to reuse. E2D guarantees reliable

transfer of all messages between NFs that use bytestream

vports, with much less overhead than full TCP. The results

show that bytestream vports can save 25% of processing

cycles, for the same amount of input traffic.

Metadata Tags. Tags can carry information along with pack-

ets and save repeated work in the applications; having the

E2D manage tags is both a convenience and potentially also

a performance benefit for application writers. The following

two experiments quantify the overhead and potential perfor-

mance benefits due to tagging packets with metadata.

Path
NF → E2D→ NF

Latency
(μs)

Gbps
(1500B)

Mpps
(64B)

Header-Match 1.56 152.515 12.76

Metadata-Match 1.695 145.826 11.96

Table 2: Latency and throughput between NFs on a single server
with and without metadata tags.

� ��� ��! ��"

�#$%&'()*+

,'/%3#$'/(57#99%:%';

���������	�
�����

<==*(*#;9'; >?:$�+5(*@$(�:';
ADF(57#99%:%'; J!,(M#$3O

Figure 8: Comparison of CPU cycles between using URL metadata
and a dedicated HTTP parser

To measure the overhead, we measure the inter-NF

throughput using our zero-copy native API under two sce-

narios. In Header-Match, the E2D simply checks a particular

header field against a configured value; no metadata tags are

attached to packets. In Metadata-Match, the source NF cre-

ates a metadata tag for each packet which is set to the value

of a bit field in the payload; the E2D then checks the tag

against a configured value. Table 2 shows our results. We see

that Metadata-Match achieves a throughput of 11.96 mpps,

compared to 12.7 for Header-Match. Thus adding metadata

lowers throughput by 5.7%.

We demonstrate the performance benefits of metadata

tags using a pipeline in which packets leaving an upstream

HTTP Logger NF are forwarded to a CDN NF based on

the value of the URL associated with their session. Since

Logger implements HTTP parsing, a native implementation

of the Logger NF can tag packets with their associated URL

and the E2D layer will steer packets based on this metadata

field. Without native metadata tags, we need to insert a

standalone ‘URL-Classifier’ NF in the pipeline between the

Logger and CDN NFs to create equivalent information. In

this case, traffic flows as Logger→ E2D → URL-Classifier
→ E2D→CDN. As shown in Figure 8, the additional NF

and E2D traversal (in bold) increase the processing load by

41% compared to the use of native tags.

7.2 E2 Control Plane Performance
We now evaluate our control plane solutions for NF place-

ment, interconnection, and dynamic scaling, showing that

our placement approach achieves better efficiency than two

strawmen solutions and that our migration-avoidance design

is better than two natural alternatives.

NF Placement. E2 aims to maximize cluster-wide through-

put by placing NFs in a manner that minimizes use of the

hardware switch capacity. We evaluate this strategy by sim-

ulating the maximum cluster-wide throughput that a rack-

scale E2 system (i.e., with 24 servers and 24 external ports)

130

0 20 40 60 80

Randomized

Linear

Aggregate throughput (Gbps)

E2 Heurstic Packing Random

Figure 9: Maximum cluster throughput with different placement
solutions, with two different pGraphs.

could sustain before any component – cores, server links, or

switch capacity – of the system is saturated. We compare our

solution to two strawmen: “Random” that places nodes on

servers at random, and “Packing” that greedily packs nodes

onto servers while traversing the iGraph depth-first. We con-

sider two iGraphs: a linear chain with 5 nodes, and a more

realistic random graph with 10 nodes.

Figure 9 shows that our approach outperforms the straw-

men in all cases. We achieve 2.25-2.59× higher throughput

compared to random placement; bin-packing does well on

a simple chain but only achieves 0.78× lower throughput

for more general graphs. Thus we see that our placement

heuristic can improve the overall cluster throughput over the

baseline bin-packing algorithm.

Finally, we measure the controller’s time to compute

placements. Our controller implementation takes 14.6ms to

compute an initial placement for a 100-node iGraph and has

a response time of 1.76ms when handling 68 split requests

per second (which represents the aggressive case of one split

request per core per second). We conclude that a centralized

controller is unlikely to be a performance bottleneck in the

system.

Updating Service Interconnection. We now look at the

time the control plane takes to update interconnection paths.

In our experiments, the time to update a single rule in the

switch varies between 1-8ms with an average of 3ms (the

datasheet suggests 1.8ms as the expected time); the switch

API only supports one update at a time. In contrast, the per-

rule update latency in E2D is only 20 μs, which can be fur-

ther amortized with a batch of multiple rules. The relatively

long time it takes to update the hardware switch (as com-

pared to the software switch) reinforces our conservative use

of switch rule entries in migration avoidance. Reconfiguring

the E2D after creating a new replica takes roughly 15ms, in-

cluding the time to coordinate with the E2 Manager and to

invoke a new instance.

Dynamic Scaling. We start by evaluating migration avoid-

ance for the simple scenario of a single NF instance that

splits in two; the NF requires flow-level affinity. We drive

the NF with 1 Gbps of input traffic, with 2,000 new flows

arriving each second on average and flow length distribu-

tions drawn from published measurement studies [32]. This

�
���
���
���
	��

����

����

� �
�
�

�
��
��
��
��

(

��
�

����(�

�����(����
��������
���

Figure 10: Traffic load at the original and new NF instance with
migration avoidance; original NF splits at 2s.

�
�
�
�
�
�

�
��
��
��
��
��

� � �� ��

�
��
��
��
��

(

��
�

��
��
��
�(
	μ
�

����(�

������(�������
������(���������

Figure 11: Latency and bandwidth overheads of migration avoid-
ance (the splitting phase is from 1.8s to 7.4s).

results in a total load of approximately 10,000 active concur-

rent flows and hence dynamic scaling (effectively) requires

‘shifting’ load equivalent to 5,000 flows off the original NF.

Fig. 10 shows the traffic load on the original and new NF

instances over time; migration avoidance is triggered close

to the 2 second mark. We see that our prototype is effective

at balancing load: once the system converges, the imbalance

in traffic load on the two instances is less than 10%.

We also look at how active flows are impacted during the

process of splitting. Fig. 11 shows the corresponding packet

latency and switch bandwidth consumption over time. We

see that packet latency and bandwidth consumption increase

during the splitting phase (roughly between the two and

eight second markers) as would be expected given we ‘de-

tour’ traffic through the E2D layer at the original instance.

However this degradation is low: in this experiment, latency

increases by less than 10μsecs on average, while switch

bandwidth increases by 0.5Gbps in the worst case, for a

small period of time; the former overhead is a fixed cost, the

latter depends on the arrival rate of new flows which is rela-

tively high in our experiment. In summary: migration avoid-

ance balances load evenly (within 10% of ideal) and within

a reasonable time frame (shifting load equivalent to roughly

5,000 flows in 5.6 seconds) and does so with minimal im-

pact to active flows (adding less than 10μseconds to packet

latencies) and highly scalable use of the switch flow table.

We briefly compare to two natural strawmen. An “always

migrate” approach, as explored in [41] and used in [21], mi-

grates half the active flows to the new NF instance. This ap-

proach achieves an ideal balance of load but is complex6 and

6For example, [41] reroutes traffic to an SDN controller while migra-

tion is in progress while [21] requires a two-phase commit between the

131

0

10

20

30

40

0

20

40

60

80

0 20 40 60 80 100

Th
ro

ug
hp

ut
 (G

bp
s)

C
PU

 (c
or

es
)

Time (s)

CPU Usage Optimal CPU
Input Traffic Switch Traffic

Figure 12: E2 under dynamic workload.

�� ������		
�� ��

Figure 13: Pipeline used for the evaluation

requires non-trivial code modifications to support surgical

migration of per-flow state. In addition, the disruption due

to migration is non-trivial: the authors of [41] report taking

5ms to migrate a single flow during which time traffic must

be “paused”; the authors do not report performance when

migrating more than a single flow.

A “never migrate” approach that does not leverage soft-

ware switches avoids migrating flows by pushing exception

filters to the hardware switch. This approach is simple and

avoids the overhead of detouring traffic that we incur. How-

ever, this approach scales poorly; e.g., running the above ex-

periment with never-migrate resulted in a 80% imbalance

while consuming all 2,048 rules on the switch.7 Not only

was the asymptotic result poor, but convergence was slow

because the switch takes over 1ms to add a single rule and

we needed to add close to 2,000 rules.

7.3 E2 Whole-System Performance
To test overall system performance for more realistic NF

workloads, we derived a policy graph based on carrier guide-

lines [7] and BNG router datasheets [4] with 4 NFs: a NAT, a

firewall, an IDS and a VPN, as shown in Figure 13. All NFs

are implemented in C over our zero-copy native API.

We use our prototype with the server and switch configu-

ration described earlier. As in prior work on scaling middle-

boxes [21], we generate traffic to match the flow-size distri-

bution observed in real-world measurements [13].

We begin the experiment with an input load of 7.2 Gbps

and the optimal placement of NFs. Over the course of the

experiment, we then vary the input load dynamically up to a

maximum of 12.3 Gbps and measure the CPU utilization and

switch bandwidth used by E2. Figure 12 plots this measured

CPU and switch resource consumption under varying input

controller and switches; the crux of the problem here is the need for close

coordination between traffic and state migration.
7The “always migrate” prototype in [41] also uses per-flow rules in

switches but this does not appear fundamental to their approach.

load. As points of comparison, we also plot the input traffic

load (a lower bound on the switch bandwidth usage) and a

computed value of the optimal number of cores. We derived

the optimal number of cores by summing up the optimal

number of NF instances for each NF in the pipeline. To

derive the optimal number of NF instances for a NF, we

multiply the cycles per unit of traffic that the NF consumes

when running in isolation by the total input traffic to the NF,

then we divide it by the cycle frequency of a CPU core.

We observe that E2’s resource consumption (both CPU

and switch bandwidth) scales dynamically to track the trend

in input load. At its maximum scaling point, the system

consumed up to 60 cores, running an iGraph of 56 vertices

(i.e., 56 NF instances) and approximately 600 edges. We

also observe the gap between actual vs. optimal resource

usage in terms of both CPU cores (22.7% on average) and

the switch bandwidth (16.4% on average). We note that

our measured CPU usage does include the cores dedicated

to running SoftNIC (which was always one per server in

our experiments) while these cores are not included in the

optimal core count. Thus the overheads that E2 incurs appear

reasonable given that our lower bounds ignore a range of

system overheads around forwarding packets between NFs,

the NIC and the switch, as also the overheads around running

multiple NFs on a shared core or CPU (cache effects, etc.),

and the efficiencies that result from avoiding migration and

incremental placement as traffic load varies. Finally, we note

that our NFs do not use our bytestream and metadata APIs

which we expect could yield further improvements.

8. Related Work
We elaborate on related efforts beyond the work mentioned

inline throughout this paper.

Industry efforts. Within industry, ETSI operates as the stan-

dards body for NFV and OPNFV is a nascent open-source

effort with many of the same participants. While “orches-

tration” figures prominently in their white papers, discus-

sions with participants in these efforts revealed that few

demonstrated solutions exist as yet. Components of E2 have

been approved as an informative standard at ETSI to fill this

role [10].

In terms of academic projects, there are various systems that

address individual aspects of E2’s functionality, such as load

balancing [18, 38], interconnection [17], declarative policies

[49], migration [21, 41], but do not provide an overall frame-

work and the system optimizations this enables.

End-to-end NF management. Closest to E2 is Stratos [20],

an orchestration layer for NFs deployed in clouds. E2 and

Stratos share similar goals but differ significantly in their

design details. At a high level, we believe these differences

stem from E2’s decision to deviate from the canonical SDN

architecture. In canonical SDN, the virtual switch at servers

132

offers only the limited processing logic associated with the

OpenFlow standard. Instead, E2’s control solutions exploit

the ability to inject ‘non standard’ processing logic on the

data path and this allows us to devise simpler and more

scalable solutions for tasks such as service interconnection,

overload detection, and dynamic scaling.

NF interconnection. Our use of metadata tags (§3) takes

inspiration from prior work on FlowTags [17] but with a few

simplifying differences: (1) we do not require metadata to

accommodate ‘mangling’ NFs, such as NAT (a key focus in

[17]); and (2) metadata tags are only declared and configured

at the time of system initialization, and at runtime the E2

datapath does not require reactive involvement of the SDN

controller on a per-flow basis, as in FlowTags. Once again,

we believe these differences follow from our decision to

embed rich programmability in the E2D layer. Our metadata

tags are also inspired by the concept of packet annotations in

Click [30] and ‘network service headers’ as defined by the

IETF’s Service Function Chaining [45].

Hardware platform. E2’s platform of choice is a combina-

tion of commodity servers and merchant switch silicon. The

ServerSwitch system [33] and some commercial “service

routers” and appliances [5] also combine x86 and switch-

ing hardware; however, in these designs, the two are tightly

integrated, locking operators into a fixed ratio of switching

to compute capacity. E2 is instead based on loose integra-

tion: operators can mix-and-match components from dif-

ferent vendors and can reconfigure (even in the field) the

amount of switching and compute capacity based on their

evolving needs. Greenhalgh et al. [22] describe their vision

of a “flowstream” platform that combines switch and x86

hardware in a manner similar to E2 but we are unaware of

a detailed design or implementation based on the proposed

platform, nor do they articulate the need for a framework of

the form E2 aims to provide.

Data plane components. Multiple recent efforts pro-

vide specialized platforms in support of efficient software

packet processing. Frameworks such as DPDK [27] and

netmap [42] are well established tools for high perfor-

mance packet I/O over commodity NICs. Other systems

address efficient packet transfer between VMs in a single

server [19, 25, 26, 43], still others explore the trade-offs in

hosting NFs in processes, containers, or VMs [29, 34]. All

these systems address issues that are complementary but or-

thogonal to E2: these systems do not address the end-to-end

NFV orchestration that E2 does (e.g., placement, scaling),

but E2 (and the NFs that E2 supports) can leverage ideas

developed in these systems for improved performance.

Dynamic scaling with cross-NF state. Our migration

avoidance scheme (§5.4) avoids the complexity of state mi-

gration for NFs that operate on state that is easily partitioned

or replicated across NF instances; e.g., per-flow counters,

per-flow state machines and forwarding tables. However, we

do not address the consistency issues that arise when global

or aggregate state is spread across multiple NF instances.

This is a difficult problem that is addressed in the Split-

Merge [41] and OpenNF [21] systems. These systems re-

quire that NF vendors adopt a new programming model [41]

or add a non-trivial amount of code to existing NF imple-

mentations [21]. To support NFs that adopt the Split-Merge

or OpenNF architecture, we could extend the E2 controller

to implement their corresponding control mechanisms.

9. Conclusion
In this paper we have presented E2, a framework for NFV

packet processing. It provides the operator with a single co-

herent system for managing NFs, while relieving developers

from having to develop per-NF solutions for placement, scal-

ing, fault-tolerance, and other functionality. We hope that an

open-source framework such as E2 will enable potential NF

vendors to focus on implementing interesting new NFs while

network operators (and the open-source community) can fo-

cus on improving the common management framework.

We verified that E2 did not impose undue overheads, and

enabled flexible and efficient interconnection of NFs. We

also demonstrated that our placement algorithm performed

substantially better than random placement and bin-packing,

and our approach to splitting NFs with affinity constraints

was superior to the competing approaches.

Acknowledgements
We thank our shepherd, Jeff Mogul, and the anonymous re-

viewers of the SOSP program committee, for their thought-

ful feedback which greatly improved this paper. Ethan Jack-

son, Kay Ousterhout, and Joshua Reich offered feedback on

early drafts of this paper and Maziar Manesh helped us de-

fine our lab environment. We are indebted to Tom Anschutz

(AT&T), Wenjing Chu (Dell), Yunsong Lu (Huawei), Chris-

tian Maciocco (Intel), Pranav Mehta (Intel), Andrew Ran-

dall (Metaswitch), Attila Takacs (Ericsson), Percy Tarapore

(AT&T), Martin Taylor (Metaswitch) and Venky Venkatesan

(Intel) for discussions on NFV efforts in industry.

Appendix: E2 Policy Language
In E2, the operator writes a collection of policy statements,

each of which is represented as a directed acyclic graph

which we call a ‘pipelet’. Nodes in a pipelet correspond to

Network Functions (NFs) which receive packets on inbound

edges and output packets to outbound edges. Edges are as-

sociated with filters which we elaborate on shortly.

NFs are instantiated from specific application types,

much like objects are instantiated from classes in object-

oriented programming. In addition to user-defined NFs,

there are predefined ones such as Port which denotes a port

on the switch, Drop, which discards packets, and Tee which

creates multiple copies of a packet.

133

// First, instantiate NFs from application types.

Proxy p;

NAT n;

FW f;

Port<0-7> int; // internal customer-facing ports

Port<8-15> ext; // external WAN-facing ports

// subnet declarations, to simplify filter writing

Address my_net 10.12.30.0/24; // private IP addr

Address wan_net 131.114.88.92/30; // public IP addr

pipelet { // outbound traffic

int [dst port 80] -> p;

int [!(dst port 80)] -> n;

p [!(dst ip my_net)] -> n;

n -> f;

f [FW.safe && !(dst ip wan_net)] -> ext;

f [!FW.safe] -> Drop;

}

pipelet { // inbound traffic

ext -> f;

f [FW.safe && (dst ip wan_net)] -> n;

n [(src port 80) && (dst ip my_net)] -> p;

n [!(src port 80) && (dst ip my_net)] -> int;

p [dst ip my_net] -> int;

}

Figure 14: An example specification of a policy. (Certain drop
actions are omitted for clarity.)

Figure 14 shows an example of a policy with two pipelets,
each of which represents a subset of the possible paths for
forward and reverse traffic respectively. Figure 15 shows
the same example in graph form. The first five lines define
the nodes in the graph. Following this are two pipelets,
each defining a graph for a specific traffic class. Within the
pipelet, we list all the edges forming a policy graph for that
traffic class. An edge is described using the simple syntax:

src [filter_out] -> (bw) [filter_in] dst;

where all three annotations—filter out, bw, and filter in—

are optional. Filters are boolean expressions computed over

packet header fields, physical/virtual ports, or metadata tags,

and are written in the libpcap-filter syntax [11]. The fil-
ter out annotations specify which packets generated from a

NF should enter the edge and implicitly define the traffic

class; filter in annotations capture requirements on incom-

ing traffic that are imposed by the downstream NF (example

below) and bw denotes the expected amount of traffic on the

edge, at system bootup.

Figure 16 shows a partial example of the use of filter in
annotations. Here outbound traffic is passed through a rate-

limiter with two input vports; high priority traffic must ar-

rive on one vport and low priority traffic on the other. Thus

traffic must be filtered prior to entering the downstream NF;

we use filter in annotations to capture such requirements. In

this example, prio0 and prio1 are NF-specific metadata that,

in this case, are resolved to ports vp0 and vp1 at compile

time based on information in the rate-limiter’s NF descrip-

tion (see §2). In some sense, these are ‘placeholder’ metadata

in that they serve as a level of indirection between policy

and mechanism but may not appear at runtime. This allows

int

n

f

p

ext Drop

(a) pipelet for outbound traffic

dst port 80

!(dst ip my_net)

!(dst port 80)

FW.safe &&
!(dst ip wan_net) !FW.safe

ext

f

n

FW.safe &&
(dst ip wan_net)

int

p

!(src port 80) &&
(dst ip my_net)

src port 80 &&
dst ip my_net

dst ip my_net

(b) Pipelet for outbound traffic

Figure 15: Graphical representation of the pipelets in Figure 14.

RateLimiter r; // two input ports, vp0 and vp1

Port<0-7> int; // internal customer-facing ports

pipelet { // outbound traffic

int [tos 0] -> [prio0] r;

int [tos 1] -> [prio1] r;

r -> ...

}

Figure 16: An example of a policy that uses filter in annotations.

the operator to be agnostic to how the rate-limiter identifies

prio0 vs. prio1 traffic. For example, if this is done using

metadata (a native rate limiter), E2 will automatically con-

figure the E2D layer to add the appropriate metadata tags; if

instead the rate-limiter offers different input ports for each

priority class, then the E2D layer will simply steer traffic to

the appropriate vport (with no tags, as in our example).

E2 merges all pipelets into a single policy graph, termed

a pGraph. During this process, E2 checks that each packet

coming from a node has exactly one destination. This is ver-

ified by checking that the filters on every pair of edges com-

ing out from a NF has an empty intersection, and that the

union of all filters attached to a NF’s output evaluates to

true. If a packet has more than one possible destination, E2

first attempts to remedy this by adding filters to ambiguous

edges, specifying the traffic class of the pipelet correspond-

ing to that edge. E.g., simply merging the two pipelets in

Figure 15 results in ambiguity for packets leaving the NAT.

E2 will thus add a filter that limits the edge for the ‘n -> f’

rule to traffic arriving from an internal port. If E2 is unable

to automatically resolve ambiguity, it returns an error (this

is possible if the operator writes a malformed pipelet); E2

also returns an error if a packet coming from a node has no

destination.

134

References
[1] AT&T Domain 2.0 Vision White Paper. https:

//www.att.com/Common/about_us/pdf/AT&T%

20Domain%202.0%20Vision%20White%20Paper.pdf.

[2] Brocade Vyatta 5400 vRouter. http://www.brocade.com/

products/all/network-functions-virtualization/

product-details/5400-vrouter/index.page.

[3] Ericsson SE Family. http://www.ericsson.com/

ourportfolio/products/se-family.

[4] Evolution of the Broadband Network Gateway. http://

resources.alcatel-lucent.com/?cid=157553.

[5] Evolved Packet Core Solution. http://lte.alcatel-

lucent.com/locale/en_us/downloads/wp_mobile_

core_technical_innovation.pdf.

[6] Intel Ethernet Switch FM6000 Series - Software Defined Net-

working. http://www.intel.com/content/dam/www/

public/us/en/documents/white-papers/ethernet-

switch-fm6000-sdn-paper.pdf.

[7] Migration to Ethernet-Based Broadband Aggregation.

http://www.broadband-forum.org/technical/

download/TR-101_Issue-2.pdf.

[8] Network Functions Virtualisation. http://www.etsi.org/

technologies-clusters/technologies/nfv.

[9] NFV Proofs of Concept. http://www.etsi.org/

technologies-clusters/technologies/nfv/nfv-poc.

[10] REL002: Scalable Architecture for Reliability (work in

progress). http://docbox.etsi.org/ISG/NFV/Open/

Drafts/.

[11] pcap-filter(7) FreeBSD Man Pages, Jan 2008.

[12] ANDERSON, C. J., FOSTER, N., GUHA, A., JEANNIN, J.-

B., KOZEN, D., SCHLESINGER, C., AND WALKER, D.

NetKAT: Semantic Foundations for Networks. In Proc. ACM
POPL (2014).

[13] BENSON, T., AKELLA, A., AND MALTZ, D. Network Traffic

Characteristics of Data Centers in the Wild. In Proc. Internet
Measurement Conference (2010).

[14] BOSSHART, P., DALY, D., IZZARD, M., MCKEOWN, N.,

REXFORD, J., TALAYCO, D., VAHDAT, A., VARGHESE,

G., AND WALKER, D. Programming Protocol-Independent

Packet Processors. CoRR abs/1312.1719 (2013).

[15] BOSSHART, P., GIBB, G., KIM, H.-S., VARGHESE,

G., MCKEOWN, N., IZZARD, M., MUJICA, F., AND

HOROWITZ, M. Forwarding Metamorphosis: Fast Pro-

grammable Match-Action Processing in Hardware for SDN.

In Proc. ACM SIGCOMM (2013).

[16] CASADO, M., FREEDMAN, M. J., PETTIT, J., LUO, J.,

MCKEOWN, N., AND SHENKER, S. Ethane: Taking Control

of the Enterprise. In Proc. ACM SIGCOMM (2007).

[17] FAYAZBAKHSH, S., CHIANG, L., SEKAR, V., YU, M., AND

MOGUL, J. FlowTags: Enforcing Network-Wide Policies in

the Face of Dynamic Middlebox Actions. In Proc. USENIX
NSDI (2014).

[18] GANDHI, R., LIU, H. H., HU, Y. C., LU, G., PADHYE, J.,

YUAN, L., AND ZHANG, M. Duet: Cloud Scale Load Balanc-

ing with Hardware and Software. In Proc. ACM SIGCOMM
(2014).

[19] GARZARELLA, S., LETTIERI, G., AND RIZZO, L. Virtual

Device Passthrough for High Speed VM Networking. In Proc.
ANCS (2015).

[20] GEMBER, A., KRISHNAMURTHY, A., JOHN, S. S.,

GRANDL, R., GAO, X., ANAND, A., BENSON, T., AKELLA,

A., AND SEKAR, V. Stratos: A Network-Aware Orchestration

Layer for Middleboxes in the Cloud. CoRR abs/1305.0209
(2013).

[21] GEMBER-JACOBSON, A., VISWANATHAN, R., PRAKASH,

C., GRANDL, R., KHALID, J., DAS, S., AND AKELLA, A.

OpenNF: Enabling Innovation in Network Function Control.

In Proc. ACM SIGCOMM (2014).

[22] GREENHALGH, A., HUICI, F., HOERDT, M., PAPADIM-

ITRIOU, P., HANDLEY, M., AND MATHY, L. Flow Process-

ing and the Rise of Commodity Network Hardware. ACM
SIGCOMM Computer Communications Review 39, 2 (2009),

20–26.

[23] HAN, S., JANG, K., PANDA, A., PALKAR, S., HAN, D.,

AND RATNASAMY, S. SoftNIC: A Software NIC to Augment

Hardware. UCB Technical Report No. UCB/EECS-2015-155
(2015).

[24] HAN, S., JANG, K., PARK, K., AND MOON, S. Packet-

Shader: a GPU-Accelerated Software Router. In Proc. ACM
SIGCOMM (2010).

[25] HONDA, M., HUICI, F., LETTIERI, G., AND RIZZO, L.

mSwitch: A Highly-Scalable, Modular Software Switch. In

Proc. SOSR (2015).

[26] HWANG, J., RAMAKRISHNAN, K. K., AND WOOD, T.

NetVM: High Performance and Flexible Networking Using

Virtualization on Commodity Platforms. IEEE Transactions
on Network and Service Management 12, 1 (2015), 34–47.

[27] Intel Data Plane Development Kit. http://dpdk.org.

[28] KERNIGHAN, B., AND LIN, S. An Efficient Heuristic Proce-

dure for Partitioning Graphs. Bell System Technical Journal
49, 2 (February 1970).

[29] KIVITY, A., LAOR, D., COSTA, G., ENBERG, P., HAR’EL,

N., MARTI, D., AND ZOLOTAROV, V. OSv—Optimizing the

Operating System for Virtual Machines. In Proc. USENIX
ATC (2014).

[30] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI, J., AND

KAASHOEK, M. F. The Click Modular Router. ACM Trans-
actions on Computer Systems 18, 3 (August 2000), 263–297.

[31] KOPONEN, T., AMIDON, K., BALLAND, P., CASADO, M.,

CHANDA, A., FULTON, B., GANICHEV, I., GROSS, J., IN-

GRAM, P., JACKSON, E., LAMBETH, A., LENGLET, R., LI,

S.-H., PADMANABHAN, A., PETTIT, J., PFAFF, B., RA-

MANATHAN, R., SHENKER, S., SHIEH, A., STRIBLING, J.,

THAKKAR, P., WENDLANDT, D., YIP, A., AND ZHANG, R.

Network Virtualization in Multi-tenant Datacenters. In Proc.
USENIX NSDI (2014).

[32] LEE, D., AND BROWNLEE, N. Passive Measurement of

One-way and Two-way Flow Lifetimes. ACM SIGCOMM
Computer Communications Review 37, 3 (November 2007).

135

[33] LU, G., GUO, C., LI, Y., ZHOU, Z., YUAN, T., WU, H.,

XIONG, Y., GAO, R., AND ZHANG, Y. ServerSwitch: A Pro-

grammable and High Performance Platform for Data Center

Networks. In Proc. USENIX NSDI (2011).

[34] MARTINS, J., AHMED, M., RAICIU, C., OLTEANU, V.,

HONDA, M., BIFULCO, R., AND HUICI, F. ClickOS and

the Art of Network Function Virtualization. In Proc. USENIX
NSDI (2014).

[35] MCCANNE, S., AND JACOBSON, V. The BSD Packet Filter:

A New Architecture for User-level Packet Capture. In Proc.
USENIX Winter (1993).

[36] MCKEOWN, N., ANDERSON, T., BALAKRISHNAN, H.,

PARULKAR, G., PETERSON, L., REXFORD, J., SHENKER,

S., AND TURNER, J. OpenFlow: Enabling Innovation in

Campus Networks. ACM SIGCOMM Computer Communi-
cations Review 38, 2 (2008), 69–74.

[37] MONSANTO, C., REICH, J., FOSTER, N., REXFORD, J.,

AND WALKER, D. Composing Software-Defined Networks.

In Proc. USENIX NSDI (2013).

[38] PATEL, P., BANSAL, D., YUAN, L., MURTHY, A., GREEN-

BERG, A., MALTZ, D. A., KERN, R., KUMAR, H., ZIKOS,

M., WU, H., KIM, C., AND KARRI, N. Ananta: Cloud Scale

Load Balancing. In Proc. ACM SIGCOMM (2013).

[39] PFAFF, B., PETTIT, J., KOPONEN, T., CASADO, M., AND

SHENKER, S. Extending Networking into the Virtualization

Layer. In Proc. ACM HotNets (2009).

[40] QAZI, Z., TU, C., CHIANG, L., MIAO, R., VYAS, S., AND

YU, M. SIMPLE-fying Middlebox Policy Enforcement Using

SDN. In Proc. ACM SIGCOMM (2013).

[41] RAJAGOPALAN, S., WILLIAMS, D., JAMJOOM, H., AND

WARFIELD, A. Split/Merge: System Support for Elastic Ex-

ecution in Virtual Middleboxes. In Proc. USENIX NSDI
(2013).

[42] RIZZO, L. netmap: A Novel Framework for Fast Packet I/O.

In Proc. USENIX ATC (2012).

[43] RIZZO, L., AND LETTIERI, G. VALE: A Switched Ethernet

for Virtual Machines. In Proc. ACM CoNEXT (2012).

[44] SEKAR, V., RATNASAMY, S., REITER, M. K., EGI, N., AND

SHI, G. The Middlebox Manifesto: Enabling Innovation in

Middlebox Deployment. In Proc. ACM HotNets (2011).

[45] Network Service Header. https://tools.ietf.org/

html/draft-quinn-nsh-00.

[46] SHERRY, J., GAO, P., BASU, S., PANDA, A., KRISH-

NAMURTHY, A., MACCIOCCO, C., MANESH, M., MAR-

TINS, J., RATNASAMY, S., RIZZO, L., AND SHENKER, S.

Rollback-Recovery for Middleboxes. In Proc. ACM SIG-
COMM (2015).

[47] SHERRY, J., HASAN, S., SCOTT, C., KRISHNAMURTHY, A.,

RATNASAMY, S., AND SEKAR, V. Making Middleboxes

Someone Else’s Problem: Network Processing as a Cloud

Service. In Proc. ACM SIGCOMM (2012).

[48] SHINDE, P., KAUFMANN, A., ROSCOE, T., AND KAESTLE,

S. We Need to Talk About NICs.

[49] SOULÉ, R., BASU, S., KLEINBERG, R., SIRER, E. G., AND

FOSTER, N. Managing the Network with Merlin. In Proc.
ACM HotNets (2013).

136

