/*- * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #define DEB(x) #define DDB(x) x /* * Implement IP packet firewall (new version) */ #if !defined(KLD_MODULE) #include "opt_ipfw.h" #include "opt_ipdivert.h" #include "opt_ipdn.h" #include "opt_inet.h" #ifndef INET #error IPFIREWALL requires INET. #endif /* INET */ #endif #include "opt_inet6.h" #include "opt_ipsec.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for ETHERTYPE_IP */ #include #include #include #include #include #define IPFW_INTERNAL /* Access to protected data structures in ip_fw.h. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #endif #include /* XXX for in_cksum */ #ifdef MAC #include #endif #ifndef VIMAGE #ifndef VIMAGE_GLOBALS struct vnet_ipfw vnet_ipfw_0; #endif #endif /* * set_disable contains one bit per set value (0..31). * If the bit is set, all rules with the corresponding set * are disabled. Set RESVD_SET(31) is reserved for the default rule * and rules that are not deleted by the flush command, * and CANNOT be disabled. * Rules in set RESVD_SET can only be deleted explicitly. */ #ifdef VIMAGE_GLOBALS static u_int32_t set_disable; static int fw_verbose; static struct callout ipfw_timeout; static int verbose_limit; #endif #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT static int default_to_accept = 1; #else static int default_to_accept; #endif static uma_zone_t ipfw_dyn_rule_zone; /* * Data structure to cache our ucred related * information. This structure only gets used if * the user specified UID/GID based constraints in * a firewall rule. */ struct ip_fw_ugid { gid_t fw_groups[NGROUPS]; int fw_ngroups; uid_t fw_uid; int fw_prid; }; /* * list of rules for layer 3 */ #ifdef VIMAGE_GLOBALS struct ip_fw_chain layer3_chain; #endif MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's"); MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables"); #define IPFW_NAT_LOADED (ipfw_nat_ptr != NULL) ipfw_nat_t *ipfw_nat_ptr = NULL; ipfw_nat_cfg_t *ipfw_nat_cfg_ptr; ipfw_nat_cfg_t *ipfw_nat_del_ptr; ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr; ipfw_nat_cfg_t *ipfw_nat_get_log_ptr; struct table_entry { struct radix_node rn[2]; struct sockaddr_in addr, mask; u_int32_t value; }; #ifdef VIMAGE_GLOBALS static int autoinc_step; #endif extern int ipfw_chg_hook(SYSCTL_HANDLER_ARGS); #ifdef SYSCTL_NODE SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall"); SYSCTL_V_PROC(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3, fw_enable, 0, ipfw_chg_hook, "I", "Enable ipfw"); SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, autoinc_step, CTLFLAG_RW, autoinc_step, 0, "Rule number auto-increment step"); SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_fw, OID_AUTO, one_pass, CTLFLAG_RW | CTLFLAG_SECURE3, fw_one_pass, 0, "Only do a single pass through ipfw when using dummynet(4)"); SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, verbose, CTLFLAG_RW | CTLFLAG_SECURE3, fw_verbose, 0, "Log matches to ipfw rules"); SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_RW, verbose_limit, 0, "Set upper limit of matches of ipfw rules logged"); SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD, NULL, IPFW_DEFAULT_RULE, "The default/max possible rule number."); SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, tables_max, CTLFLAG_RD, NULL, IPFW_TABLES_MAX, "The maximum number of tables."); SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, default_to_accept, CTLFLAG_RDTUN, &default_to_accept, 0, "Make the default rule accept all packets."); TUNABLE_INT("net.inet.ip.fw.default_to_accept", &default_to_accept); #endif /* SYSCTL_NODE */ /* * Description of dynamic rules. * * Dynamic rules are stored in lists accessed through a hash table * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can * be modified through the sysctl variable dyn_buckets which is * updated when the table becomes empty. * * XXX currently there is only one list, ipfw_dyn. * * When a packet is received, its address fields are first masked * with the mask defined for the rule, then hashed, then matched * against the entries in the corresponding list. * Dynamic rules can be used for different purposes: * + stateful rules; * + enforcing limits on the number of sessions; * + in-kernel NAT (not implemented yet) * * The lifetime of dynamic rules is regulated by dyn_*_lifetime, * measured in seconds and depending on the flags. * * The total number of dynamic rules is stored in dyn_count. * The max number of dynamic rules is dyn_max. When we reach * the maximum number of rules we do not create anymore. This is * done to avoid consuming too much memory, but also too much * time when searching on each packet (ideally, we should try instead * to put a limit on the length of the list on each bucket...). * * Each dynamic rule holds a pointer to the parent ipfw rule so * we know what action to perform. Dynamic rules are removed when * the parent rule is deleted. XXX we should make them survive. * * There are some limitations with dynamic rules -- we do not * obey the 'randomized match', and we do not do multiple * passes through the firewall. XXX check the latter!!! */ #ifdef VIMAGE_GLOBALS static ipfw_dyn_rule **ipfw_dyn_v; static u_int32_t dyn_buckets; static u_int32_t curr_dyn_buckets; #endif static struct mtx ipfw_dyn_mtx; /* mutex guarding dynamic rules */ #define IPFW_DYN_LOCK_INIT() \ mtx_init(&ipfw_dyn_mtx, "IPFW dynamic rules", NULL, MTX_DEF) #define IPFW_DYN_LOCK_DESTROY() mtx_destroy(&ipfw_dyn_mtx) #define IPFW_DYN_LOCK() mtx_lock(&ipfw_dyn_mtx) #define IPFW_DYN_UNLOCK() mtx_unlock(&ipfw_dyn_mtx) #define IPFW_DYN_LOCK_ASSERT() mtx_assert(&ipfw_dyn_mtx, MA_OWNED) /* * Timeouts for various events in handing dynamic rules. */ #ifdef VIMAGE_GLOBALS static u_int32_t dyn_ack_lifetime; static u_int32_t dyn_syn_lifetime; static u_int32_t dyn_fin_lifetime; static u_int32_t dyn_rst_lifetime; static u_int32_t dyn_udp_lifetime; static u_int32_t dyn_short_lifetime; /* * Keepalives are sent if dyn_keepalive is set. They are sent every * dyn_keepalive_period seconds, in the last dyn_keepalive_interval * seconds of lifetime of a rule. * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower * than dyn_keepalive_period. */ static u_int32_t dyn_keepalive_interval; static u_int32_t dyn_keepalive_period; static u_int32_t dyn_keepalive; static u_int32_t static_count; /* # of static rules */ static u_int32_t static_len; /* size in bytes of static rules */ static u_int32_t dyn_count; /* # of dynamic rules */ static u_int32_t dyn_max; /* max # of dynamic rules */ #endif /* VIMAGE_GLOBALS */ #ifdef SYSCTL_NODE SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_buckets, CTLFLAG_RW, dyn_buckets, 0, "Number of dyn. buckets"); SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, curr_dyn_buckets, CTLFLAG_RD, curr_dyn_buckets, 0, "Current Number of dyn. buckets"); SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_count, CTLFLAG_RD, dyn_count, 0, "Number of dyn. rules"); SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_max, CTLFLAG_RW, dyn_max, 0, "Max number of dyn. rules"); SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, static_count, CTLFLAG_RD, static_count, 0, "Number of static rules"); SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime, CTLFLAG_RW, dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks"); SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime, CTLFLAG_RW, dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn"); SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime, CTLFLAG_RW, dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin"); SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime, CTLFLAG_RW, dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst"); SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime, CTLFLAG_RW, dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP"); SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_short_lifetime, CTLFLAG_RW, dyn_short_lifetime, 0, "Lifetime of dyn. rules for other situations"); SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_keepalive, CTLFLAG_RW, dyn_keepalive, 0, "Enable keepalives for dyn. rules"); #endif /* SYSCTL_NODE */ #ifdef INET6 /* * IPv6 specific variables */ #ifdef SYSCTL_NODE SYSCTL_DECL(_net_inet6_ip6); #endif /* SYSCTL_NODE */ static struct sysctl_ctx_list ip6_fw_sysctl_ctx; static struct sysctl_oid *ip6_fw_sysctl_tree; #endif /* INET6 */ #ifdef VIMAGE_GLOBALS static int fw_deny_unknown_exthdrs; #endif /* * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T * Other macros just cast void * into the appropriate type */ #define L3HDR(T, ip) ((T *)((u_int32_t *)(ip) + (ip)->ip_hl)) #define TCP(p) ((struct tcphdr *)(p)) #define SCTP(p) ((struct sctphdr *)(p)) #define UDP(p) ((struct udphdr *)(p)) #define ICMP(p) ((struct icmphdr *)(p)) #define ICMP6(p) ((struct icmp6_hdr *)(p)) static __inline int icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd) { int type = icmp->icmp_type; return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<icmp_type; return (type <= ICMP_MAXTYPE && (TT & (1<arg1 or cmd->d[0]. * * We scan options and store the bits we find set. We succeed if * * (want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear * * The code is sometimes optimized not to store additional variables. */ static int flags_match(ipfw_insn *cmd, u_int8_t bits) { u_char want_clear; bits = ~bits; if ( ((cmd->arg1 & 0xff) & bits) != 0) return 0; /* some bits we want set were clear */ want_clear = (cmd->arg1 >> 8) & 0xff; if ( (want_clear & bits) != want_clear) return 0; /* some bits we want clear were set */ return 1; } static int ipopts_match(struct ip *ip, ipfw_insn *cmd) { int optlen, bits = 0; u_char *cp = (u_char *)(ip + 1); int x = (ip->ip_hl << 2) - sizeof (struct ip); for (; x > 0; x -= optlen, cp += optlen) { int opt = cp[IPOPT_OPTVAL]; if (opt == IPOPT_EOL) break; if (opt == IPOPT_NOP) optlen = 1; else { optlen = cp[IPOPT_OLEN]; if (optlen <= 0 || optlen > x) return 0; /* invalid or truncated */ } switch (opt) { default: break; case IPOPT_LSRR: bits |= IP_FW_IPOPT_LSRR; break; case IPOPT_SSRR: bits |= IP_FW_IPOPT_SSRR; break; case IPOPT_RR: bits |= IP_FW_IPOPT_RR; break; case IPOPT_TS: bits |= IP_FW_IPOPT_TS; break; } } return (flags_match(cmd, bits)); } static int tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd) { int optlen, bits = 0; u_char *cp = (u_char *)(tcp + 1); int x = (tcp->th_off << 2) - sizeof(struct tcphdr); for (; x > 0; x -= optlen, cp += optlen) { int opt = cp[0]; if (opt == TCPOPT_EOL) break; if (opt == TCPOPT_NOP) optlen = 1; else { optlen = cp[1]; if (optlen <= 0) break; } switch (opt) { default: break; case TCPOPT_MAXSEG: bits |= IP_FW_TCPOPT_MSS; break; case TCPOPT_WINDOW: bits |= IP_FW_TCPOPT_WINDOW; break; case TCPOPT_SACK_PERMITTED: case TCPOPT_SACK: bits |= IP_FW_TCPOPT_SACK; break; case TCPOPT_TIMESTAMP: bits |= IP_FW_TCPOPT_TS; break; } } return (flags_match(cmd, bits)); } static int iface_match(struct ifnet *ifp, ipfw_insn_if *cmd) { if (ifp == NULL) /* no iface with this packet, match fails */ return 0; /* Check by name or by IP address */ if (cmd->name[0] != '\0') { /* match by name */ /* Check name */ if (cmd->p.glob) { if (fnmatch(cmd->name, ifp->if_xname, 0) == 0) return(1); } else { if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0) return(1); } } else { struct ifaddr *ia; IF_ADDR_LOCK(ifp); TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) { if (ia->ifa_addr->sa_family != AF_INET) continue; if (cmd->p.ip.s_addr == ((struct sockaddr_in *) (ia->ifa_addr))->sin_addr.s_addr) { IF_ADDR_UNLOCK(ifp); return(1); /* match */ } } IF_ADDR_UNLOCK(ifp); } return(0); /* no match, fail ... */ } /* * The verify_path function checks if a route to the src exists and * if it is reachable via ifp (when provided). * * The 'verrevpath' option checks that the interface that an IP packet * arrives on is the same interface that traffic destined for the * packet's source address would be routed out of. The 'versrcreach' * option just checks that the source address is reachable via any route * (except default) in the routing table. These two are a measure to block * forged packets. This is also commonly known as "anti-spoofing" or Unicast * Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs * is purposely reminiscent of the Cisco IOS command, * * ip verify unicast reverse-path * ip verify unicast source reachable-via any * * which implements the same functionality. But note that syntax is * misleading. The check may be performed on all IP packets whether unicast, * multicast, or broadcast. */ static int verify_path(struct in_addr src, struct ifnet *ifp, u_int fib) { struct route ro; struct sockaddr_in *dst; bzero(&ro, sizeof(ro)); dst = (struct sockaddr_in *)&(ro.ro_dst); dst->sin_family = AF_INET; dst->sin_len = sizeof(*dst); dst->sin_addr = src; in_rtalloc_ign(&ro, 0, fib); if (ro.ro_rt == NULL) return 0; /* * If ifp is provided, check for equality with rtentry. * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp, * in order to pass packets injected back by if_simloop(): * if useloopback == 1 routing entry (via lo0) for our own address * may exist, so we need to handle routing assymetry. */ if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) { RTFREE(ro.ro_rt); return 0; } /* if no ifp provided, check if rtentry is not default route */ if (ifp == NULL && satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) { RTFREE(ro.ro_rt); return 0; } /* or if this is a blackhole/reject route */ if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) { RTFREE(ro.ro_rt); return 0; } /* found valid route */ RTFREE(ro.ro_rt); return 1; } #ifdef INET6 /* * ipv6 specific rules here... */ static __inline int icmp6type_match (int type, ipfw_insn_u32 *cmd) { return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) ); } static int flow6id_match( int curr_flow, ipfw_insn_u32 *cmd ) { int i; for (i=0; i <= cmd->o.arg1; ++i ) if (curr_flow == cmd->d[i] ) return 1; return 0; } /* support for IP6_*_ME opcodes */ static int search_ip6_addr_net (struct in6_addr * ip6_addr) { INIT_VNET_NET(curvnet); struct ifnet *mdc; struct ifaddr *mdc2; struct in6_ifaddr *fdm; struct in6_addr copia; TAILQ_FOREACH(mdc, &V_ifnet, if_link) { IF_ADDR_LOCK(mdc); TAILQ_FOREACH(mdc2, &mdc->if_addrhead, ifa_link) { if (mdc2->ifa_addr->sa_family == AF_INET6) { fdm = (struct in6_ifaddr *)mdc2; copia = fdm->ia_addr.sin6_addr; /* need for leaving scope_id in the sock_addr */ in6_clearscope(&copia); if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia)) { IF_ADDR_UNLOCK(mdc); return 1; } } } IF_ADDR_UNLOCK(mdc); } return 0; } static int verify_path6(struct in6_addr *src, struct ifnet *ifp) { struct route_in6 ro; struct sockaddr_in6 *dst; bzero(&ro, sizeof(ro)); dst = (struct sockaddr_in6 * )&(ro.ro_dst); dst->sin6_family = AF_INET6; dst->sin6_len = sizeof(*dst); dst->sin6_addr = *src; /* XXX MRT 0 for ipv6 at this time */ rtalloc_ign((struct route *)&ro, 0); if (ro.ro_rt == NULL) return 0; /* * if ifp is provided, check for equality with rtentry * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp, * to support the case of sending packets to an address of our own. * (where the former interface is the first argument of if_simloop() * (=ifp), the latter is lo0) */ if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) { RTFREE(ro.ro_rt); return 0; } /* if no ifp provided, check if rtentry is not default route */ if (ifp == NULL && IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) { RTFREE(ro.ro_rt); return 0; } /* or if this is a blackhole/reject route */ if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) { RTFREE(ro.ro_rt); return 0; } /* found valid route */ RTFREE(ro.ro_rt); return 1; } static __inline int hash_packet6(struct ipfw_flow_id *id) { u_int32_t i; i = (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^ (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^ (id->src_ip6.__u6_addr.__u6_addr32[2]) ^ (id->src_ip6.__u6_addr.__u6_addr32[3]) ^ (id->dst_port) ^ (id->src_port); return i; } static int is_icmp6_query(int icmp6_type) { if ((icmp6_type <= ICMP6_MAXTYPE) && (icmp6_type == ICMP6_ECHO_REQUEST || icmp6_type == ICMP6_MEMBERSHIP_QUERY || icmp6_type == ICMP6_WRUREQUEST || icmp6_type == ICMP6_FQDN_QUERY || icmp6_type == ICMP6_NI_QUERY)) return (1); return (0); } static void send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6) { struct mbuf *m; m = args->m; if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) { struct tcphdr *tcp; tcp_seq ack, seq; int flags; struct { struct ip6_hdr ip6; struct tcphdr th; } ti; tcp = (struct tcphdr *)((char *)ip6 + hlen); if ((tcp->th_flags & TH_RST) != 0) { m_freem(m); args->m = NULL; return; } ti.ip6 = *ip6; ti.th = *tcp; ti.th.th_seq = ntohl(ti.th.th_seq); ti.th.th_ack = ntohl(ti.th.th_ack); ti.ip6.ip6_nxt = IPPROTO_TCP; if (ti.th.th_flags & TH_ACK) { ack = 0; seq = ti.th.th_ack; flags = TH_RST; } else { ack = ti.th.th_seq; if ((m->m_flags & M_PKTHDR) != 0) { /* * total new data to ACK is: * total packet length, * minus the header length, * minus the tcp header length. */ ack += m->m_pkthdr.len - hlen - (ti.th.th_off << 2); } else if (ip6->ip6_plen) { ack += ntohs(ip6->ip6_plen) + sizeof(*ip6) - hlen - (ti.th.th_off << 2); } else { m_freem(m); return; } if (tcp->th_flags & TH_SYN) ack++; seq = 0; flags = TH_RST|TH_ACK; } bcopy(&ti, ip6, sizeof(ti)); /* * m is only used to recycle the mbuf * The data in it is never read so we don't need * to correct the offsets or anything */ tcp_respond(NULL, ip6, tcp, m, ack, seq, flags); } else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */ #if 0 /* * Unlike above, the mbufs need to line up with the ip6 hdr, * as the contents are read. We need to m_adj() the * needed amount. * The mbuf will however be thrown away so we can adjust it. * Remember we did an m_pullup on it already so we * can make some assumptions about contiguousness. */ if (args->L3offset) m_adj(m, args->L3offset); #endif icmp6_error(m, ICMP6_DST_UNREACH, code, 0); } else m_freem(m); args->m = NULL; } #endif /* INET6 */ #ifdef VIMAGE_GLOBALS static u_int64_t norule_counter; /* counter for ipfw_log(NULL...) */ #endif #define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0 #define SNP(buf) buf, sizeof(buf) /* * We enter here when we have a rule with O_LOG. * XXX this function alone takes about 2Kbytes of code! */ static void ipfw_log(struct ip_fw *f, u_int hlen, struct ip_fw_args *args, struct mbuf *m, struct ifnet *oif, u_short offset, uint32_t tablearg, struct ip *ip) { INIT_VNET_IPFW(curvnet); struct ether_header *eh = args->eh; char *action; int limit_reached = 0; char action2[40], proto[128], fragment[32]; fragment[0] = '\0'; proto[0] = '\0'; if (f == NULL) { /* bogus pkt */ if (V_verbose_limit != 0 && V_norule_counter >= V_verbose_limit) return; V_norule_counter++; if (V_norule_counter == V_verbose_limit) limit_reached = V_verbose_limit; action = "Refuse"; } else { /* O_LOG is the first action, find the real one */ ipfw_insn *cmd = ACTION_PTR(f); ipfw_insn_log *l = (ipfw_insn_log *)cmd; if (l->max_log != 0 && l->log_left == 0) return; l->log_left--; if (l->log_left == 0) limit_reached = l->max_log; cmd += F_LEN(cmd); /* point to first action */ if (cmd->opcode == O_ALTQ) { ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd; snprintf(SNPARGS(action2, 0), "Altq %d", altq->qid); cmd += F_LEN(cmd); } if (cmd->opcode == O_PROB) cmd += F_LEN(cmd); if (cmd->opcode == O_TAG) cmd += F_LEN(cmd); action = action2; switch (cmd->opcode) { case O_DENY: action = "Deny"; break; case O_REJECT: if (cmd->arg1==ICMP_REJECT_RST) action = "Reset"; else if (cmd->arg1==ICMP_UNREACH_HOST) action = "Reject"; else snprintf(SNPARGS(action2, 0), "Unreach %d", cmd->arg1); break; case O_UNREACH6: if (cmd->arg1==ICMP6_UNREACH_RST) action = "Reset"; else snprintf(SNPARGS(action2, 0), "Unreach %d", cmd->arg1); break; case O_ACCEPT: action = "Accept"; break; case O_COUNT: action = "Count"; break; case O_DIVERT: snprintf(SNPARGS(action2, 0), "Divert %d", cmd->arg1); break; case O_TEE: snprintf(SNPARGS(action2, 0), "Tee %d", cmd->arg1); break; case O_SETFIB: snprintf(SNPARGS(action2, 0), "SetFib %d", cmd->arg1); break; case O_SKIPTO: snprintf(SNPARGS(action2, 0), "SkipTo %d", cmd->arg1); break; case O_PIPE: snprintf(SNPARGS(action2, 0), "Pipe %d", cmd->arg1); break; case O_QUEUE: snprintf(SNPARGS(action2, 0), "Queue %d", cmd->arg1); break; case O_FORWARD_IP: { ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd; int len; struct in_addr dummyaddr; if (sa->sa.sin_addr.s_addr == INADDR_ANY) dummyaddr.s_addr = htonl(tablearg); else dummyaddr.s_addr = sa->sa.sin_addr.s_addr; len = snprintf(SNPARGS(action2, 0), "Forward to %s", inet_ntoa(dummyaddr)); if (sa->sa.sin_port) snprintf(SNPARGS(action2, len), ":%d", sa->sa.sin_port); } break; case O_NETGRAPH: snprintf(SNPARGS(action2, 0), "Netgraph %d", cmd->arg1); break; case O_NGTEE: snprintf(SNPARGS(action2, 0), "Ngtee %d", cmd->arg1); break; case O_NAT: action = "Nat"; break; case O_REASS: action = "Reass"; break; default: action = "UNKNOWN"; break; } } if (hlen == 0) { /* non-ip */ snprintf(SNPARGS(proto, 0), "MAC"); } else { int len; char src[48], dst[48]; struct icmphdr *icmp; struct tcphdr *tcp; struct udphdr *udp; #ifdef INET6 struct ip6_hdr *ip6 = NULL; struct icmp6_hdr *icmp6; #endif src[0] = '\0'; dst[0] = '\0'; #ifdef INET6 if (IS_IP6_FLOW_ID(&(args->f_id))) { char ip6buf[INET6_ADDRSTRLEN]; snprintf(src, sizeof(src), "[%s]", ip6_sprintf(ip6buf, &args->f_id.src_ip6)); snprintf(dst, sizeof(dst), "[%s]", ip6_sprintf(ip6buf, &args->f_id.dst_ip6)); ip6 = (struct ip6_hdr *)ip; tcp = (struct tcphdr *)(((char *)ip) + hlen); udp = (struct udphdr *)(((char *)ip) + hlen); } else #endif { tcp = L3HDR(struct tcphdr, ip); udp = L3HDR(struct udphdr, ip); inet_ntoa_r(ip->ip_src, src); inet_ntoa_r(ip->ip_dst, dst); } switch (args->f_id.proto) { case IPPROTO_TCP: len = snprintf(SNPARGS(proto, 0), "TCP %s", src); if (offset == 0) snprintf(SNPARGS(proto, len), ":%d %s:%d", ntohs(tcp->th_sport), dst, ntohs(tcp->th_dport)); else snprintf(SNPARGS(proto, len), " %s", dst); break; case IPPROTO_UDP: len = snprintf(SNPARGS(proto, 0), "UDP %s", src); if (offset == 0) snprintf(SNPARGS(proto, len), ":%d %s:%d", ntohs(udp->uh_sport), dst, ntohs(udp->uh_dport)); else snprintf(SNPARGS(proto, len), " %s", dst); break; case IPPROTO_ICMP: icmp = L3HDR(struct icmphdr, ip); if (offset == 0) len = snprintf(SNPARGS(proto, 0), "ICMP:%u.%u ", icmp->icmp_type, icmp->icmp_code); else len = snprintf(SNPARGS(proto, 0), "ICMP "); len += snprintf(SNPARGS(proto, len), "%s", src); snprintf(SNPARGS(proto, len), " %s", dst); break; #ifdef INET6 case IPPROTO_ICMPV6: icmp6 = (struct icmp6_hdr *)(((char *)ip) + hlen); if (offset == 0) len = snprintf(SNPARGS(proto, 0), "ICMPv6:%u.%u ", icmp6->icmp6_type, icmp6->icmp6_code); else len = snprintf(SNPARGS(proto, 0), "ICMPv6 "); len += snprintf(SNPARGS(proto, len), "%s", src); snprintf(SNPARGS(proto, len), " %s", dst); break; #endif default: len = snprintf(SNPARGS(proto, 0), "P:%d %s", args->f_id.proto, src); snprintf(SNPARGS(proto, len), " %s", dst); break; } #ifdef INET6 if (IS_IP6_FLOW_ID(&(args->f_id))) { if (offset & (IP6F_OFF_MASK | IP6F_MORE_FRAG)) snprintf(SNPARGS(fragment, 0), " (frag %08x:%d@%d%s)", args->f_id.frag_id6, ntohs(ip6->ip6_plen) - hlen, ntohs(offset & IP6F_OFF_MASK) << 3, (offset & IP6F_MORE_FRAG) ? "+" : ""); } else #endif { int ip_off, ip_len; if (eh != NULL) { /* layer 2 packets are as on the wire */ ip_off = ntohs(ip->ip_off); ip_len = ntohs(ip->ip_len); } else { ip_off = ip->ip_off; ip_len = ip->ip_len; } if (ip_off & (IP_MF | IP_OFFMASK)) snprintf(SNPARGS(fragment, 0), " (frag %d:%d@%d%s)", ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2), offset << 3, (ip_off & IP_MF) ? "+" : ""); } } if (oif || m->m_pkthdr.rcvif) log(LOG_SECURITY | LOG_INFO, "ipfw: %d %s %s %s via %s%s\n", f ? f->rulenum : -1, action, proto, oif ? "out" : "in", oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname, fragment); else log(LOG_SECURITY | LOG_INFO, "ipfw: %d %s %s [no if info]%s\n", f ? f->rulenum : -1, action, proto, fragment); if (limit_reached) log(LOG_SECURITY | LOG_NOTICE, "ipfw: limit %d reached on entry %d\n", limit_reached, f ? f->rulenum : -1); } /* * IMPORTANT: the hash function for dynamic rules must be commutative * in source and destination (ip,port), because rules are bidirectional * and we want to find both in the same bucket. */ static __inline int hash_packet(struct ipfw_flow_id *id) { INIT_VNET_IPFW(curvnet); u_int32_t i; #ifdef INET6 if (IS_IP6_FLOW_ID(id)) i = hash_packet6(id); else #endif /* INET6 */ i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port); i &= (V_curr_dyn_buckets - 1); return i; } /** * unlink a dynamic rule from a chain. prev is a pointer to * the previous one, q is a pointer to the rule to delete, * head is a pointer to the head of the queue. * Modifies q and potentially also head. */ #define UNLINK_DYN_RULE(prev, head, q) { \ ipfw_dyn_rule *old_q = q; \ \ /* remove a refcount to the parent */ \ if (q->dyn_type == O_LIMIT) \ q->parent->count--; \ DEB(printf("ipfw: unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",\ (q->id.src_ip), (q->id.src_port), \ (q->id.dst_ip), (q->id.dst_port), V_dyn_count-1 ); ) \ if (prev != NULL) \ prev->next = q = q->next; \ else \ head = q = q->next; \ V_dyn_count--; \ uma_zfree(ipfw_dyn_rule_zone, old_q); } #define TIME_LEQ(a,b) ((int)((a)-(b)) <= 0) /** * Remove dynamic rules pointing to "rule", or all of them if rule == NULL. * * If keep_me == NULL, rules are deleted even if not expired, * otherwise only expired rules are removed. * * The value of the second parameter is also used to point to identify * a rule we absolutely do not want to remove (e.g. because we are * holding a reference to it -- this is the case with O_LIMIT_PARENT * rules). The pointer is only used for comparison, so any non-null * value will do. */ static void remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me) { INIT_VNET_IPFW(curvnet); static u_int32_t last_remove = 0; #define FORCE (keep_me == NULL) ipfw_dyn_rule *prev, *q; int i, pass = 0, max_pass = 0; IPFW_DYN_LOCK_ASSERT(); if (V_ipfw_dyn_v == NULL || V_dyn_count == 0) return; /* do not expire more than once per second, it is useless */ if (!FORCE && last_remove == time_uptime) return; last_remove = time_uptime; /* * because O_LIMIT refer to parent rules, during the first pass only * remove child and mark any pending LIMIT_PARENT, and remove * them in a second pass. */ next_pass: for (i = 0 ; i < V_curr_dyn_buckets ; i++) { for (prev=NULL, q = V_ipfw_dyn_v[i] ; q ; ) { /* * Logic can become complex here, so we split tests. */ if (q == keep_me) goto next; if (rule != NULL && rule != q->rule) goto next; /* not the one we are looking for */ if (q->dyn_type == O_LIMIT_PARENT) { /* * handle parent in the second pass, * record we need one. */ max_pass = 1; if (pass == 0) goto next; if (FORCE && q->count != 0 ) { /* XXX should not happen! */ printf("ipfw: OUCH! cannot remove rule," " count %d\n", q->count); } } else { if (!FORCE && !TIME_LEQ( q->expire, time_uptime )) goto next; } if (q->dyn_type != O_LIMIT_PARENT || !q->count) { UNLINK_DYN_RULE(prev, V_ipfw_dyn_v[i], q); continue; } next: prev=q; q=q->next; } } if (pass++ < max_pass) goto next_pass; } /** * lookup a dynamic rule. */ static ipfw_dyn_rule * lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int *match_direction, struct tcphdr *tcp) { INIT_VNET_IPFW(curvnet); /* * stateful ipfw extensions. * Lookup into dynamic session queue */ #define MATCH_REVERSE 0 #define MATCH_FORWARD 1 #define MATCH_NONE 2 #define MATCH_UNKNOWN 3 int i, dir = MATCH_NONE; ipfw_dyn_rule *prev, *q=NULL; IPFW_DYN_LOCK_ASSERT(); if (V_ipfw_dyn_v == NULL) goto done; /* not found */ i = hash_packet( pkt ); for (prev=NULL, q = V_ipfw_dyn_v[i] ; q != NULL ; ) { if (q->dyn_type == O_LIMIT_PARENT && q->count) goto next; if (TIME_LEQ( q->expire, time_uptime)) { /* expire entry */ UNLINK_DYN_RULE(prev, V_ipfw_dyn_v[i], q); continue; } if (pkt->proto == q->id.proto && q->dyn_type != O_LIMIT_PARENT) { if (IS_IP6_FLOW_ID(pkt)) { if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6), &(q->id.src_ip6)) && IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6), &(q->id.dst_ip6)) && pkt->src_port == q->id.src_port && pkt->dst_port == q->id.dst_port ) { dir = MATCH_FORWARD; break; } if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6), &(q->id.dst_ip6)) && IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6), &(q->id.src_ip6)) && pkt->src_port == q->id.dst_port && pkt->dst_port == q->id.src_port ) { dir = MATCH_REVERSE; break; } } else { if (pkt->src_ip == q->id.src_ip && pkt->dst_ip == q->id.dst_ip && pkt->src_port == q->id.src_port && pkt->dst_port == q->id.dst_port ) { dir = MATCH_FORWARD; break; } if (pkt->src_ip == q->id.dst_ip && pkt->dst_ip == q->id.src_ip && pkt->src_port == q->id.dst_port && pkt->dst_port == q->id.src_port ) { dir = MATCH_REVERSE; break; } } } next: prev = q; q = q->next; } if (q == NULL) goto done; /* q = NULL, not found */ if ( prev != NULL) { /* found and not in front */ prev->next = q->next; q->next = V_ipfw_dyn_v[i]; V_ipfw_dyn_v[i] = q; } if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */ u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST); #define BOTH_SYN (TH_SYN | (TH_SYN << 8)) #define BOTH_FIN (TH_FIN | (TH_FIN << 8)) q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8); switch (q->state) { case TH_SYN: /* opening */ q->expire = time_uptime + V_dyn_syn_lifetime; break; case BOTH_SYN: /* move to established */ case BOTH_SYN | TH_FIN : /* one side tries to close */ case BOTH_SYN | (TH_FIN << 8) : if (tcp) { #define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0) u_int32_t ack = ntohl(tcp->th_ack); if (dir == MATCH_FORWARD) { if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd)) q->ack_fwd = ack; else { /* ignore out-of-sequence */ break; } } else { if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev)) q->ack_rev = ack; else { /* ignore out-of-sequence */ break; } } } q->expire = time_uptime + V_dyn_ack_lifetime; break; case BOTH_SYN | BOTH_FIN: /* both sides closed */ if (V_dyn_fin_lifetime >= V_dyn_keepalive_period) V_dyn_fin_lifetime = V_dyn_keepalive_period - 1; q->expire = time_uptime + V_dyn_fin_lifetime; break; default: #if 0 /* * reset or some invalid combination, but can also * occur if we use keep-state the wrong way. */ if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0) printf("invalid state: 0x%x\n", q->state); #endif if (V_dyn_rst_lifetime >= V_dyn_keepalive_period) V_dyn_rst_lifetime = V_dyn_keepalive_period - 1; q->expire = time_uptime + V_dyn_rst_lifetime; break; } } else if (pkt->proto == IPPROTO_UDP) { q->expire = time_uptime + V_dyn_udp_lifetime; } else { /* other protocols */ q->expire = time_uptime + V_dyn_short_lifetime; } done: if (match_direction) *match_direction = dir; return q; } static ipfw_dyn_rule * lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction, struct tcphdr *tcp) { ipfw_dyn_rule *q; IPFW_DYN_LOCK(); q = lookup_dyn_rule_locked(pkt, match_direction, tcp); if (q == NULL) IPFW_DYN_UNLOCK(); /* NB: return table locked when q is not NULL */ return q; } static void realloc_dynamic_table(void) { INIT_VNET_IPFW(curvnet); IPFW_DYN_LOCK_ASSERT(); /* * Try reallocation, make sure we have a power of 2 and do * not allow more than 64k entries. In case of overflow, * default to 1024. */ if (V_dyn_buckets > 65536) V_dyn_buckets = 1024; if ((V_dyn_buckets & (V_dyn_buckets-1)) != 0) { /* not a power of 2 */ V_dyn_buckets = V_curr_dyn_buckets; /* reset */ return; } V_curr_dyn_buckets = V_dyn_buckets; if (V_ipfw_dyn_v != NULL) free(V_ipfw_dyn_v, M_IPFW); for (;;) { V_ipfw_dyn_v = malloc(V_curr_dyn_buckets * sizeof(ipfw_dyn_rule *), M_IPFW, M_NOWAIT | M_ZERO); if (V_ipfw_dyn_v != NULL || V_curr_dyn_buckets <= 2) break; V_curr_dyn_buckets /= 2; } } /** * Install state of type 'type' for a dynamic session. * The hash table contains two type of rules: * - regular rules (O_KEEP_STATE) * - rules for sessions with limited number of sess per user * (O_LIMIT). When they are created, the parent is * increased by 1, and decreased on delete. In this case, * the third parameter is the parent rule and not the chain. * - "parent" rules for the above (O_LIMIT_PARENT). */ static ipfw_dyn_rule * add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule) { INIT_VNET_IPFW(curvnet); ipfw_dyn_rule *r; int i; IPFW_DYN_LOCK_ASSERT(); if (V_ipfw_dyn_v == NULL || (V_dyn_count == 0 && V_dyn_buckets != V_curr_dyn_buckets)) { realloc_dynamic_table(); if (V_ipfw_dyn_v == NULL) return NULL; /* failed ! */ } i = hash_packet(id); r = uma_zalloc(ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO); if (r == NULL) { printf ("ipfw: sorry cannot allocate state\n"); return NULL; } /* increase refcount on parent, and set pointer */ if (dyn_type == O_LIMIT) { ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule; if ( parent->dyn_type != O_LIMIT_PARENT) panic("invalid parent"); parent->count++; r->parent = parent; rule = parent->rule; } r->id = *id; r->expire = time_uptime + V_dyn_syn_lifetime; r->rule = rule; r->dyn_type = dyn_type; r->pcnt = r->bcnt = 0; r->count = 0; r->bucket = i; r->next = V_ipfw_dyn_v[i]; V_ipfw_dyn_v[i] = r; V_dyn_count++; DEB(printf("ipfw: add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n", dyn_type, (r->id.src_ip), (r->id.src_port), (r->id.dst_ip), (r->id.dst_port), V_dyn_count ); ) return r; } /** * lookup dynamic parent rule using pkt and rule as search keys. * If the lookup fails, then install one. */ static ipfw_dyn_rule * lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule) { INIT_VNET_IPFW(curvnet); ipfw_dyn_rule *q; int i; IPFW_DYN_LOCK_ASSERT(); if (V_ipfw_dyn_v) { int is_v6 = IS_IP6_FLOW_ID(pkt); i = hash_packet( pkt ); for (q = V_ipfw_dyn_v[i] ; q != NULL ; q=q->next) if (q->dyn_type == O_LIMIT_PARENT && rule== q->rule && pkt->proto == q->id.proto && pkt->src_port == q->id.src_port && pkt->dst_port == q->id.dst_port && ( (is_v6 && IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6), &(q->id.src_ip6)) && IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6), &(q->id.dst_ip6))) || (!is_v6 && pkt->src_ip == q->id.src_ip && pkt->dst_ip == q->id.dst_ip) ) ) { q->expire = time_uptime + V_dyn_short_lifetime; DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q);) return q; } } return add_dyn_rule(pkt, O_LIMIT_PARENT, rule); } /** * Install dynamic state for rule type cmd->o.opcode * * Returns 1 (failure) if state is not installed because of errors or because * session limitations are enforced. */ static int install_state(struct ip_fw *rule, ipfw_insn_limit *cmd, struct ip_fw_args *args, uint32_t tablearg) { INIT_VNET_IPFW(curvnet); static int last_log; ipfw_dyn_rule *q; struct in_addr da; char src[48], dst[48]; src[0] = '\0'; dst[0] = '\0'; DEB( printf("ipfw: %s: type %d 0x%08x %u -> 0x%08x %u\n", __func__, cmd->o.opcode, (args->f_id.src_ip), (args->f_id.src_port), (args->f_id.dst_ip), (args->f_id.dst_port)); ) IPFW_DYN_LOCK(); q = lookup_dyn_rule_locked(&args->f_id, NULL, NULL); if (q != NULL) { /* should never occur */ if (last_log != time_uptime) { last_log = time_uptime; printf("ipfw: %s: entry already present, done\n", __func__); } IPFW_DYN_UNLOCK(); return (0); } if (V_dyn_count >= V_dyn_max) /* Run out of slots, try to remove any expired rule. */ remove_dyn_rule(NULL, (ipfw_dyn_rule *)1); if (V_dyn_count >= V_dyn_max) { if (last_log != time_uptime) { last_log = time_uptime; printf("ipfw: %s: Too many dynamic rules\n", __func__); } IPFW_DYN_UNLOCK(); return (1); /* cannot install, notify caller */ } switch (cmd->o.opcode) { case O_KEEP_STATE: /* bidir rule */ add_dyn_rule(&args->f_id, O_KEEP_STATE, rule); break; case O_LIMIT: { /* limit number of sessions */ struct ipfw_flow_id id; ipfw_dyn_rule *parent; uint32_t conn_limit; uint16_t limit_mask = cmd->limit_mask; conn_limit = (cmd->conn_limit == IP_FW_TABLEARG) ? tablearg : cmd->conn_limit; DEB( if (cmd->conn_limit == IP_FW_TABLEARG) printf("ipfw: %s: O_LIMIT rule, conn_limit: %u " "(tablearg)\n", __func__, conn_limit); else printf("ipfw: %s: O_LIMIT rule, conn_limit: %u\n", __func__, conn_limit); ) id.dst_ip = id.src_ip = id.dst_port = id.src_port = 0; id.proto = args->f_id.proto; id.addr_type = args->f_id.addr_type; id.fib = M_GETFIB(args->m); if (IS_IP6_FLOW_ID (&(args->f_id))) { if (limit_mask & DYN_SRC_ADDR) id.src_ip6 = args->f_id.src_ip6; if (limit_mask & DYN_DST_ADDR) id.dst_ip6 = args->f_id.dst_ip6; } else { if (limit_mask & DYN_SRC_ADDR) id.src_ip = args->f_id.src_ip; if (limit_mask & DYN_DST_ADDR) id.dst_ip = args->f_id.dst_ip; } if (limit_mask & DYN_SRC_PORT) id.src_port = args->f_id.src_port; if (limit_mask & DYN_DST_PORT) id.dst_port = args->f_id.dst_port; if ((parent = lookup_dyn_parent(&id, rule)) == NULL) { printf("ipfw: %s: add parent failed\n", __func__); IPFW_DYN_UNLOCK(); return (1); } if (parent->count >= conn_limit) { /* See if we can remove some expired rule. */ remove_dyn_rule(rule, parent); if (parent->count >= conn_limit) { if (V_fw_verbose && last_log != time_uptime) { last_log = time_uptime; #ifdef INET6 /* * XXX IPv6 flows are not * supported yet. */ if (IS_IP6_FLOW_ID(&(args->f_id))) { char ip6buf[INET6_ADDRSTRLEN]; snprintf(src, sizeof(src), "[%s]", ip6_sprintf(ip6buf, &args->f_id.src_ip6)); snprintf(dst, sizeof(dst), "[%s]", ip6_sprintf(ip6buf, &args->f_id.dst_ip6)); } else #endif { da.s_addr = htonl(args->f_id.src_ip); inet_ntoa_r(da, src); da.s_addr = htonl(args->f_id.dst_ip); inet_ntoa_r(da, dst); } log(LOG_SECURITY | LOG_DEBUG, "ipfw: %d %s %s:%u -> %s:%u, %s\n", parent->rule->rulenum, "drop session", src, (args->f_id.src_port), dst, (args->f_id.dst_port), "too many entries"); } IPFW_DYN_UNLOCK(); return (1); } } add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent); break; } default: printf("ipfw: %s: unknown dynamic rule type %u\n", __func__, cmd->o.opcode); IPFW_DYN_UNLOCK(); return (1); } /* XXX just set lifetime */ lookup_dyn_rule_locked(&args->f_id, NULL, NULL); IPFW_DYN_UNLOCK(); return (0); } /* * Generate a TCP packet, containing either a RST or a keepalive. * When flags & TH_RST, we are sending a RST packet, because of a * "reset" action matched the packet. * Otherwise we are sending a keepalive, and flags & TH_ * The 'replyto' mbuf is the mbuf being replied to, if any, and is required * so that MAC can label the reply appropriately. */ static struct mbuf * send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq, u_int32_t ack, int flags) { INIT_VNET_INET(curvnet); struct mbuf *m; struct ip *ip; struct tcphdr *tcp; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == 0) return (NULL); m->m_pkthdr.rcvif = (struct ifnet *)0; M_SETFIB(m, id->fib); #ifdef MAC if (replyto != NULL) mac_netinet_firewall_reply(replyto, m); else mac_netinet_firewall_send(m); #else (void)replyto; /* don't warn about unused arg */ #endif m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr); m->m_data += max_linkhdr; ip = mtod(m, struct ip *); bzero(ip, m->m_len); tcp = (struct tcphdr *)(ip + 1); /* no IP options */ ip->ip_p = IPPROTO_TCP; tcp->th_off = 5; /* * Assume we are sending a RST (or a keepalive in the reverse * direction), swap src and destination addresses and ports. */ ip->ip_src.s_addr = htonl(id->dst_ip); ip->ip_dst.s_addr = htonl(id->src_ip); tcp->th_sport = htons(id->dst_port); tcp->th_dport = htons(id->src_port); if (flags & TH_RST) { /* we are sending a RST */ if (flags & TH_ACK) { tcp->th_seq = htonl(ack); tcp->th_ack = htonl(0); tcp->th_flags = TH_RST; } else { if (flags & TH_SYN) seq++; tcp->th_seq = htonl(0); tcp->th_ack = htonl(seq); tcp->th_flags = TH_RST | TH_ACK; } } else { /* * We are sending a keepalive. flags & TH_SYN determines * the direction, forward if set, reverse if clear. * NOTE: seq and ack are always assumed to be correct * as set by the caller. This may be confusing... */ if (flags & TH_SYN) { /* * we have to rewrite the correct addresses! */ ip->ip_dst.s_addr = htonl(id->dst_ip); ip->ip_src.s_addr = htonl(id->src_ip); tcp->th_dport = htons(id->dst_port); tcp->th_sport = htons(id->src_port); } tcp->th_seq = htonl(seq); tcp->th_ack = htonl(ack); tcp->th_flags = TH_ACK; } /* * set ip_len to the payload size so we can compute * the tcp checksum on the pseudoheader * XXX check this, could save a couple of words ? */ ip->ip_len = htons(sizeof(struct tcphdr)); tcp->th_sum = in_cksum(m, m->m_pkthdr.len); /* * now fill fields left out earlier */ ip->ip_ttl = V_ip_defttl; ip->ip_len = m->m_pkthdr.len; m->m_flags |= M_SKIP_FIREWALL; return (m); } /* * sends a reject message, consuming the mbuf passed as an argument. */ static void send_reject(struct ip_fw_args *args, int code, int ip_len, struct ip *ip) { #if 0 /* XXX When ip is not guaranteed to be at mtod() we will * need to account for this */ * The mbuf will however be thrown away so we can adjust it. * Remember we did an m_pullup on it already so we * can make some assumptions about contiguousness. */ if (args->L3offset) m_adj(m, args->L3offset); #endif if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */ /* We need the IP header in host order for icmp_error(). */ if (args->eh != NULL) { ip->ip_len = ntohs(ip->ip_len); ip->ip_off = ntohs(ip->ip_off); } icmp_error(args->m, ICMP_UNREACH, code, 0L, 0); } else if (args->f_id.proto == IPPROTO_TCP) { struct tcphdr *const tcp = L3HDR(struct tcphdr, mtod(args->m, struct ip *)); if ( (tcp->th_flags & TH_RST) == 0) { struct mbuf *m; m = send_pkt(args->m, &(args->f_id), ntohl(tcp->th_seq), ntohl(tcp->th_ack), tcp->th_flags | TH_RST); if (m != NULL) ip_output(m, NULL, NULL, 0, NULL, NULL); } m_freem(args->m); } else m_freem(args->m); args->m = NULL; } /** * * Given an ip_fw *, lookup_next_rule will return a pointer * to the next rule, which can be either the jump * target (for skipto instructions) or the next one in the list (in * all other cases including a missing jump target). * The result is also written in the "next_rule" field of the rule. * Backward jumps are not allowed, so start looking from the next * rule... * * This never returns NULL -- in case we do not have an exact match, * the next rule is returned. When the ruleset is changed, * pointers are flushed so we are always correct. */ static struct ip_fw * lookup_next_rule(struct ip_fw *me, u_int32_t tablearg) { struct ip_fw *rule = NULL; ipfw_insn *cmd; u_int16_t rulenum; /* look for action, in case it is a skipto */ cmd = ACTION_PTR(me); if (cmd->opcode == O_LOG) cmd += F_LEN(cmd); if (cmd->opcode == O_ALTQ) cmd += F_LEN(cmd); if (cmd->opcode == O_TAG) cmd += F_LEN(cmd); if (cmd->opcode == O_SKIPTO ) { if (tablearg != 0) { rulenum = (u_int16_t)tablearg; } else { rulenum = cmd->arg1; } for (rule = me->next; rule ; rule = rule->next) { if (rule->rulenum >= rulenum) { break; } } } if (rule == NULL) /* failure or not a skipto */ rule = me->next; me->next_rule = rule; return rule; } static int add_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr, uint8_t mlen, uint32_t value) { struct radix_node_head *rnh; struct table_entry *ent; struct radix_node *rn; if (tbl >= IPFW_TABLES_MAX) return (EINVAL); rnh = ch->tables[tbl]; ent = malloc(sizeof(*ent), M_IPFW_TBL, M_NOWAIT | M_ZERO); if (ent == NULL) return (ENOMEM); ent->value = value; ent->addr.sin_len = ent->mask.sin_len = 8; ent->mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0); ent->addr.sin_addr.s_addr = addr & ent->mask.sin_addr.s_addr; IPFW_WLOCK(ch); rn = rnh->rnh_addaddr(&ent->addr, &ent->mask, rnh, (void *)ent); if (rn == NULL) { IPFW_WUNLOCK(ch); free(ent, M_IPFW_TBL); return (EEXIST); } IPFW_WUNLOCK(ch); return (0); } static int del_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr, uint8_t mlen) { struct radix_node_head *rnh; struct table_entry *ent; struct sockaddr_in sa, mask; if (tbl >= IPFW_TABLES_MAX) return (EINVAL); rnh = ch->tables[tbl]; sa.sin_len = mask.sin_len = 8; mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0); sa.sin_addr.s_addr = addr & mask.sin_addr.s_addr; IPFW_WLOCK(ch); ent = (struct table_entry *)rnh->rnh_deladdr(&sa, &mask, rnh); if (ent == NULL) { IPFW_WUNLOCK(ch); return (ESRCH); } IPFW_WUNLOCK(ch); free(ent, M_IPFW_TBL); return (0); } static int flush_table_entry(struct radix_node *rn, void *arg) { struct radix_node_head * const rnh = arg; struct table_entry *ent; ent = (struct table_entry *) rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, rnh); if (ent != NULL) free(ent, M_IPFW_TBL); return (0); } static int flush_table(struct ip_fw_chain *ch, uint16_t tbl) { struct radix_node_head *rnh; IPFW_WLOCK_ASSERT(ch); if (tbl >= IPFW_TABLES_MAX) return (EINVAL); rnh = ch->tables[tbl]; KASSERT(rnh != NULL, ("NULL IPFW table")); rnh->rnh_walktree(rnh, flush_table_entry, rnh); return (0); } static void flush_tables(struct ip_fw_chain *ch) { uint16_t tbl; IPFW_WLOCK_ASSERT(ch); for (tbl = 0; tbl < IPFW_TABLES_MAX; tbl++) flush_table(ch, tbl); } static int init_tables(struct ip_fw_chain *ch) { int i; uint16_t j; for (i = 0; i < IPFW_TABLES_MAX; i++) { if (!rn_inithead((void **)&ch->tables[i], 32)) { for (j = 0; j < i; j++) { (void) flush_table(ch, j); } return (ENOMEM); } } return (0); } static int lookup_table(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr, uint32_t *val) { struct radix_node_head *rnh; struct table_entry *ent; struct sockaddr_in sa; if (tbl >= IPFW_TABLES_MAX) return (0); rnh = ch->tables[tbl]; sa.sin_len = 8; sa.sin_addr.s_addr = addr; ent = (struct table_entry *)(rnh->rnh_lookup(&sa, NULL, rnh)); if (ent != NULL) { *val = ent->value; return (1); } return (0); } static int count_table_entry(struct radix_node *rn, void *arg) { u_int32_t * const cnt = arg; (*cnt)++; return (0); } static int count_table(struct ip_fw_chain *ch, uint32_t tbl, uint32_t *cnt) { struct radix_node_head *rnh; if (tbl >= IPFW_TABLES_MAX) return (EINVAL); rnh = ch->tables[tbl]; *cnt = 0; rnh->rnh_walktree(rnh, count_table_entry, cnt); return (0); } static int dump_table_entry(struct radix_node *rn, void *arg) { struct table_entry * const n = (struct table_entry *)rn; ipfw_table * const tbl = arg; ipfw_table_entry *ent; if (tbl->cnt == tbl->size) return (1); ent = &tbl->ent[tbl->cnt]; ent->tbl = tbl->tbl; if (in_nullhost(n->mask.sin_addr)) ent->masklen = 0; else ent->masklen = 33 - ffs(ntohl(n->mask.sin_addr.s_addr)); ent->addr = n->addr.sin_addr.s_addr; ent->value = n->value; tbl->cnt++; return (0); } static int dump_table(struct ip_fw_chain *ch, ipfw_table *tbl) { struct radix_node_head *rnh; if (tbl->tbl >= IPFW_TABLES_MAX) return (EINVAL); rnh = ch->tables[tbl->tbl]; tbl->cnt = 0; rnh->rnh_walktree(rnh, dump_table_entry, tbl); return (0); } static void fill_ugid_cache(struct inpcb *inp, struct ip_fw_ugid *ugp) { struct ucred *cr; cr = inp->inp_cred; ugp->fw_prid = jailed(cr) ? cr->cr_prison->pr_id : -1; ugp->fw_uid = cr->cr_uid; ugp->fw_ngroups = cr->cr_ngroups; bcopy(cr->cr_groups, ugp->fw_groups, sizeof(ugp->fw_groups)); } static int check_uidgid(ipfw_insn_u32 *insn, int proto, struct ifnet *oif, struct in_addr dst_ip, u_int16_t dst_port, struct in_addr src_ip, u_int16_t src_port, struct ip_fw_ugid *ugp, int *ugid_lookupp, struct inpcb *inp) { INIT_VNET_INET(curvnet); struct inpcbinfo *pi; int wildcard; struct inpcb *pcb; int match; gid_t *gp; /* * Check to see if the UDP or TCP stack supplied us with * the PCB. If so, rather then holding a lock and looking * up the PCB, we can use the one that was supplied. */ if (inp && *ugid_lookupp == 0) { INP_LOCK_ASSERT(inp); if (inp->inp_socket != NULL) { fill_ugid_cache(inp, ugp); *ugid_lookupp = 1; } else *ugid_lookupp = -1; } /* * If we have already been here and the packet has no * PCB entry associated with it, then we can safely * assume that this is a no match. */ if (*ugid_lookupp == -1) return (0); if (proto == IPPROTO_TCP) { wildcard = 0; pi = &V_tcbinfo; } else if (proto == IPPROTO_UDP) { wildcard = INPLOOKUP_WILDCARD; pi = &V_udbinfo; } else return 0; match = 0; if (*ugid_lookupp == 0) { INP_INFO_RLOCK(pi); pcb = (oif) ? in_pcblookup_hash(pi, dst_ip, htons(dst_port), src_ip, htons(src_port), wildcard, oif) : in_pcblookup_hash(pi, src_ip, htons(src_port), dst_ip, htons(dst_port), wildcard, NULL); if (pcb != NULL) { fill_ugid_cache(pcb, ugp); *ugid_lookupp = 1; } INP_INFO_RUNLOCK(pi); if (*ugid_lookupp == 0) { /* * If the lookup did not yield any results, there * is no sense in coming back and trying again. So * we can set lookup to -1 and ensure that we wont * bother the pcb system again. */ *ugid_lookupp = -1; return (0); } } if (insn->o.opcode == O_UID) match = (ugp->fw_uid == (uid_t)insn->d[0]); else if (insn->o.opcode == O_GID) { for (gp = ugp->fw_groups; gp < &ugp->fw_groups[ugp->fw_ngroups]; gp++) if (*gp == (gid_t)insn->d[0]) { match = 1; break; } } else if (insn->o.opcode == O_JAIL) match = (ugp->fw_prid == (int)insn->d[0]); return match; } /* * Here there are a set of function used by the * dispatching table in the ipfw_chk() function. * * The callbacks argument is a structure containing * - the argument as received by ipfw_chk(); * - a set of variables used by the external loops; * - a set of values containing packets related information. */ struct opcode_args { /* argument received from ipfw_chk */ struct ip_fw_args *args; /* variable used in the external loop */ ipfw_insn *cmd; uint32_t tablearg; int l; int cmdlen; int skip_or; /* skip rest of OR block */ int done; /* flag for actions match */ /* * Variables holding state during the processing of a packet: * * IMPORTANT NOTE: to speed up the processing of rules, there * are some assumption on the values of the variables, which * are documented here. Should you change them, please check * the implementation of the various instructions to make sure * that they still work. * * args->eh The MAC header. It is non-null for a layer2 * packet, it is NULL for a layer-3 packet. * **notyet** * args->L3offset Offset in the packet to the L3 (IP or equiv.) header. * * m | args->m Pointer to the mbuf, as received from the caller. * It may change if ipfw_chk() does an m_pullup, or if it * consumes the packet because it calls send_reject(). * XXX This has to change, so that ipfw_chk() never modifies * or consumes the buffer. * ip is the beginning of the ip(4 or 6) header. * Calculated by adding the L3offset to the start of data. * (Until we start using L3offset, the packet is * supposed to start with the ip header). */ struct mbuf *m; struct ip *ip; /* * For rules which contain uid/gid or jail constraints, cache * a copy of the users credentials after the pcb lookup has been * executed. This will speed up the processing of rules with * these types of constraints, as well as decrease contention * on pcb related locks. */ struct ip_fw_ugid fw_ugid_cache; int ugid_lookup; /* * divinput_flags If non-zero, set to the IP_FW_DIVERT_*_FLAG * associated with a packet input on a divert socket. This * will allow to distinguish traffic and its direction when * it originates from a divert socket. */ u_int divinput_flags; /* * oif | args->oif If NULL, ipfw_chk has been called on the * inbound path (ether_input, ip_input). * If non-NULL, ipfw_chk has been called on the outbound path * (ether_output, ip_output). */ struct ifnet *oif; struct ip_fw *f; /* matching rule */ int retval; /* * hlen The length of the IP header. */ u_int hlen; /* hlen >0 means we have an IP pkt */ /* * offset The offset of a fragment. offset != 0 means that * we have a fragment at this offset of an IPv4 packet. * offset == 0 means that (if this is an IPv4 packet) * this is the first or only fragment. * For IPv6 offset == 0 means there is no Fragment Header. * If offset != 0 for IPv6 always use correct mask to * get the correct offset because we add IP6F_MORE_FRAG * to be able to dectect the first fragment which would * otherwise have offset = 0. */ u_short offset; /* * Local copies of addresses. They are only valid if we have * an IP packet. * * proto The protocol. Set to 0 for non-ip packets, * or to the protocol read from the packet otherwise. * proto != 0 means that we have an IPv4 packet. * * src_port, dst_port port numbers, in HOST format. Only * valid for TCP and UDP packets. * * src_ip, dst_ip ip addresses, in NETWORK format. * Only valid for IPv4 packets. */ u_int8_t proto; u_int16_t src_port; /* NOTE: host format */ u_int16_t dst_port; /* NOTE: host format */ struct in_addr src_ip; /* NOTE: network format */ struct in_addr dst_ip; /* NOTE: network format */ u_int16_t ip_len; int pktlen; u_int16_t etype; /* Host order stored ether type */ /* * dyn_dir = MATCH_UNKNOWN when rules unchecked, * MATCH_NONE when checked and not matched (q = NULL), * MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL) */ int dyn_dir; ipfw_dyn_rule *q; struct m_tag *mtag; /* * We store in ulp a pointer to the upper layer protocol header. * In the ipv4 case this is easy to determine from the header, * but for ipv6 we might have some additional headers in the middle. * ulp is NULL if not found. */ void *ulp; /* upper layer protocol pointer. */ /* XXX ipv6 variables */ int is_ipv6; u_int16_t ext_hd; /* bits vector for extension header filtering */ /* end of ipv6 variables */ int is_ipv4; }; /* * The first set of opcodes compares the packet's * fields with some pattern, setting 'match' (1) if a * match is found. * * At the end of the loop there is * logic to deal with F_NOT and F_OR flags associated * with the opcode. */ /* * The opcodes dispatching table. * * This is an arraty of O_LAST_OPCODE function pointers * which return an int and take a struct opcode_args * pointer as argument. */ int (*opcode_cbs[O_LAST_OPCODE])(struct opcode_args *); /* * This is the default function for the * opcode tables, print unimplemented * message and return not match */ static int ex_unimplemented(struct opcode_args *o) { printf("ipfw: opcode %d unimplemented\n", o->cmd->opcode); return 0; } /* * no operation, always return match */ static int ex_nop(struct opcode_args *o) { return 1; } /* * Used by O_GID, O_UID and O_JAIL * We only check offset == 0 && proto != 0, * as this ensures that we have a * packet with the ports info. */ static int ex_gid(struct opcode_args *o) { int match = 0; if (o->offset!=0) return match; if (o->is_ipv6) /* XXX to be fixed later */ return match; if (o->proto == IPPROTO_TCP || o->proto == IPPROTO_UDP) match = check_uidgid((ipfw_insn_u32 *)o->cmd, o->proto, o->oif, o->dst_ip, o->dst_port, o->src_ip, o->src_port, &(o->fw_ugid_cache), &(o->ugid_lookup), o->args->inp); return match; } /* * match received, trasmit and via interface respectively */ static int ex_recv(struct opcode_args *o) { return iface_match(o->m->m_pkthdr.rcvif, (ipfw_insn_if *)o->cmd); } static int ex_xmit(struct opcode_args *o) { return iface_match(o->oif, (ipfw_insn_if *)o->cmd); } static int ex_via(struct opcode_args *o) { return iface_match(o->oif ? o->oif : o->m->m_pkthdr.rcvif, (ipfw_insn_if *)o->cmd); } static int ex_macaddr2(struct opcode_args *o) { int match = 0; if (o->args->eh != NULL) { /* have MAC header */ u_int32_t *want = (u_int32_t *) ((ipfw_insn_mac *)o->cmd)->addr; u_int32_t *mask = (u_int32_t *) ((ipfw_insn_mac *)o->cmd)->mask; u_int32_t *hdr = (u_int32_t *)o->args->eh; match = ( want[0] == (hdr[0] & mask[0]) && want[1] == (hdr[1] & mask[1]) && want[2] == (hdr[2] & mask[2]) ); } return match; } static int ex_mac_type(struct opcode_args *o) { int match = 0; if (o->args->eh != NULL) { u_int16_t *p = ((ipfw_insn_u16 *)o->cmd)->ports; int i; for (i = o->cmdlen - 1; !match && i>0; i--, p += 2) match = (o->etype >= p[0] && o->etype <= p[1]); } return match; } static int ex_frag(struct opcode_args *o) { return (o->offset != 0); } /* "out" is "not in" */ static int ex_in(struct opcode_args *o) { return (o->oif == NULL); } static int ex_layer2(struct opcode_args *o) { return (o->args->eh != NULL); } static int ex_diverted(struct opcode_args *o) { return (o->cmd->arg1 & 1 && o->divinput_flags & IP_FW_DIVERT_LOOPBACK_FLAG) || (o->cmd->arg1 & 2 && o->divinput_flags & IP_FW_DIVERT_OUTPUT_FLAG); } /* * We do not allow an arg of 0 so the * check of "proto" only suffices. */ static int ex_proto(struct opcode_args *o) { return (o->proto == o->cmd->arg1); } static int ex_ip_src(struct opcode_args *o) { return (o->is_ipv4 && ( ((ipfw_insn_ip *)o->cmd)->addr.s_addr == o->src_ip.s_addr )); } /* * used by O_IP_SRC_LOOKUP and O_IP_DST_LOOKUP */ static int ex_lookup(struct opcode_args *o) { int match = 0; struct ip_fw_chain *chain = &V_layer3_chain; if (o->is_ipv4) { uint32_t a = (o->cmd->opcode == O_IP_DST_LOOKUP) ? o->dst_ip.s_addr : o->src_ip.s_addr; uint32_t v = 0; match = lookup_table(chain, o->cmd->arg1, a, &v); if (!match) return match; if (o->cmdlen == F_INSN_SIZE(ipfw_insn_u32)) match = ((ipfw_insn_u32 *)o->cmd)->d[0] == v; else o->tablearg = v; } return match; } /* * used by O_IP_SRC_MASK and O_IP_DST_MASK */ static int ex_mask(struct opcode_args *o) { int match = 0; if (o->is_ipv4) { uint32_t a = (o->cmd->opcode == O_IP_DST_MASK) ? o->dst_ip.s_addr : o->src_ip.s_addr; uint32_t *p = ((ipfw_insn_u32 *)o->cmd)->d; int i = o->cmdlen-1; for (; !match && i>0; i-= 2, p+= 2) match = (p[0] == (a & p[1])); } return match; } static int ex_ip_src_me(struct opcode_args *o) { int match = 0; if (o->is_ipv4) { struct ifnet *tif; INADDR_TO_IFP(o->src_ip, tif); match = (tif != NULL); } return match; } /* * used by O_IP_DST_SET and O_IP_SRC_SET */ static int ex_ip_set(struct opcode_args *o) { int match = 0; if (o->is_ipv4) { u_int32_t *d = (u_int32_t *)(o->cmd+1); u_int32_t addr = o->cmd->opcode == O_IP_DST_SET ? o->args->f_id.dst_ip : o->args->f_id.src_ip; if (addr < d[0]) return match; addr -= d[0]; /* subtract base */ match = (addr < o->cmd->arg1) && ( d[ 1 + (addr>>5)] & (1<<(addr & 0x1f)) ); } return match; } static int ex_ip_dst(struct opcode_args *o) { return (o->is_ipv4 && (((ipfw_insn_ip *)o->cmd)->addr.s_addr == o->dst_ip.s_addr)); } static int ex_ip_dst_me(struct opcode_args *o) { int match = 0; if (o->is_ipv4) { struct ifnet *tif; INADDR_TO_IFP(o->dst_ip, tif); match = (tif != NULL); } return match; } /* * used by O_IP_SRCPORT and O_IP_DSTPORT * * offset == 0 && proto != 0 is enough * to guarantee that we have a * packet with port info. */ static int ex_ip_port(struct opcode_args *o) { int match = 0; if ((o->proto==IPPROTO_UDP || o->proto==IPPROTO_TCP) && o->offset == 0) { u_int16_t x = (o->cmd->opcode == O_IP_SRCPORT) ? o->src_port : o->dst_port ; u_int16_t *p = ((ipfw_insn_u16 *)o->cmd)->ports; int i; for (i = o->cmdlen - 1; !match && i>0; i--, p += 2) match = (x>=p[0] && x<=p[1]); } return match; } static int ex_icmptype(struct opcode_args *o) { return (o->offset == 0 && o->proto==IPPROTO_ICMP && icmptype_match(ICMP(o->ulp), (ipfw_insn_u32 *)o->cmd) ); } static int ex_icmp6type(struct opcode_args *o) { int match = 0; #ifdef INET6 match = o->is_ipv6 && o->offset == 0 && o->proto==IPPROTO_ICMPV6 && icmp6type_match( ICMP6(o->ulp)->icmp6_type, (ipfw_insn_u32 *)o->cmd); #endif /* INET6 */ return match; } static int ex_ipopt(struct opcode_args *o) { return (o->is_ipv4 && ipopts_match(o->ip, o->cmd)); } static int ex_ipver(struct opcode_args *o) { return (o->is_ipv4 && o->cmd->arg1 == o->ip->ip_v); } /* used by O_IPID, O_IPLEN, O_IPTTL */ static int ex_ipid(struct opcode_args *o) { int match = 0; ipfw_insn *cmd = o->cmd; if (o->is_ipv4) { /* only for IP packets */ uint16_t x; uint16_t *p; int i; if (cmd->opcode == O_IPLEN) x = o->ip_len; else if (cmd->opcode == O_IPTTL) x = o->ip->ip_ttl; else /* must be IPID */ x = ntohs(o->ip->ip_id); if (o->cmdlen == 1) { match = (cmd->arg1 == x); return match; } /* otherwise we have ranges */ p = ((ipfw_insn_u16 *)cmd)->ports; i = o->cmdlen - 1; for (; !match && i>0; i--, p += 2) match = (x >= p[0] && x <= p[1]); } return match; } static int ex_ipprecedence(struct opcode_args *o) { return (o->is_ipv4 && (o->cmd->arg1 == (o->ip->ip_tos & 0xe0)) ); } static int ex_iptos(struct opcode_args *o) { return (o->is_ipv4 && flags_match(o->cmd, o->ip->ip_tos)); } static int ex_tcpdatalen(struct opcode_args *o) { int match = 0; if (o->proto == IPPROTO_TCP && o->offset == 0) { struct tcphdr *tcp; uint16_t x; uint16_t *p; int i; tcp = TCP(o->ulp); x = o->ip_len - ((o->ip->ip_hl + tcp->th_off) << 2); if (o->cmdlen == 1) { match = (o->cmd->arg1 == x); return match; } /* otherwise we have ranges */ p = ((ipfw_insn_u16 *)o->cmd)->ports; i = o->cmdlen - 1; for (; !match && i>0; i--, p += 2) match = (x >= p[0] && x <= p[1]); } return match; } static int ex_tcpflags(struct opcode_args *o) { return (o->proto == IPPROTO_TCP && o->offset == 0 && flags_match(o->cmd, TCP(o->ulp)->th_flags)); } static int ex_tcpopts(struct opcode_args *o) { return (o->proto == IPPROTO_TCP && o->offset == 0 && tcpopts_match(TCP(o->ulp), o->cmd)); } static int ex_tcpseq(struct opcode_args *o) { return (o->proto == IPPROTO_TCP && o->offset == 0 && ((ipfw_insn_u32 *)o->cmd)->d[0] == TCP(o->ulp)->th_seq); } static int ex_tcpack(struct opcode_args *o) { return (o->proto == IPPROTO_TCP && o->offset == 0 && ((ipfw_insn_u32 *)o->cmd)->d[0] == TCP(o->ulp)->th_ack); } static int ex_tcpwin(struct opcode_args *o) { return (o->proto == IPPROTO_TCP && o->offset == 0 && o->cmd->arg1 == TCP(o->ulp)->th_win); } static int ex_estab(struct opcode_args *o) { /* reject packets which have SYN only */ /* XXX should i also check for TH_ACK ? */ return (o->proto == IPPROTO_TCP && o->offset == 0 && (TCP(o->ulp)->th_flags & (TH_RST | TH_ACK | TH_SYN)) != TH_SYN); } static int ex_altq(struct opcode_args *o) { int match = 1; struct pf_mtag *at; ipfw_insn_altq *altq = (ipfw_insn_altq *)o->cmd; at = pf_find_mtag(o->m); if (at != NULL && at->qid != 0) return match; at = pf_get_mtag(o->m); if (at == NULL) { /* * Let the packet fall back to the * default ALTQ. */ return match; } at->qid = altq->qid; if (o->is_ipv4) at->af = AF_INET; else at->af = AF_LINK; at->hdr = o->ip; return match; } static int ex_log(struct opcode_args *o) { if (V_fw_verbose) ipfw_log(o->f, o->hlen, o->args, o->m, o->oif, o->offset, o->tablearg, o->ip); return 1; } static int ex_prob(struct opcode_args *o) { return (random()<((ipfw_insn_u32 *)o->cmd)->d[0]); } static int ex_verrevpath(struct opcode_args *o) { int match = 0; /* Outgoing packets automatically pass/match */ match = ((o->oif != NULL) || (o->m->m_pkthdr.rcvif == NULL) || ( #ifdef INET6 o->is_ipv6 ? verify_path6(&(o->args->f_id.src_ip6), o->m->m_pkthdr.rcvif) : #endif verify_path(o->src_ip, o->m->m_pkthdr.rcvif, o->args->f_id.fib))); return match; } static int ex_versrcreach(struct opcode_args *o) { int match = 0; /* Outgoing packets automatically pass/match */ match = (o->hlen > 0 && ((o->oif != NULL) || #ifdef INET6 o->is_ipv6 ? verify_path6(&(o->args->f_id.src_ip6), NULL) : #endif verify_path(o->src_ip, NULL, o->args->f_id.fib))); return match; } static int ex_antispoof(struct opcode_args *o) { int match = 0; /* Outgoing packets automatically pass/match */ if (o->oif == NULL && o->hlen > 0 && ( (o->is_ipv4 && in_localaddr(o->src_ip)) #ifdef INET6 || (o->is_ipv6 && in6_localaddr(&(o->args->f_id.src_ip6))) #endif )) match = #ifdef INET6 o->is_ipv6 ? verify_path6( &(o->args->f_id.src_ip6), o->m->m_pkthdr.rcvif) : #endif verify_path(o->src_ip, o->m->m_pkthdr.rcvif, o->args->f_id.fib); else match = 1; return match; } static int ex_ipsec(struct opcode_args *o) { #ifdef IPSEC return (m_tag_find(o->m, PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL); #endif return 0; /* otherwise no match */ } #ifdef INET6 static int ex_ip6_src(struct opcode_args *o) { return (o->is_ipv6 && IN6_ARE_ADDR_EQUAL(&o->args->f_id.src_ip6, &((ipfw_insn_ip6 *)o->cmd)->addr6)); } static int ex_ip6_dst(struct opcode_args *o) { return (o->is_ipv6 && IN6_ARE_ADDR_EQUAL(&o->args->f_id.dst_ip6, &((ipfw_insn_ip6 *)o->cmd)->addr6)); } /* used by O_IP6_SRC_MASK and O_IP6_DST_MASK */ static int ex_ip6_mask(struct opcode_args *o) { int match = 0; if (o->is_ipv6) { int i = o->cmdlen - 1; struct in6_addr p; struct in6_addr *d = &((ipfw_insn_ip6 *)o->cmd)->addr6; for (; !match && i > 0; d += 2, i -= F_INSN_SIZE(struct in6_addr) * 2) { p = (o->cmd->opcode == O_IP6_SRC_MASK) ? o->args->f_id.src_ip6: o->args->f_id.dst_ip6; APPLY_MASK(&p, &d[1]); match = IN6_ARE_ADDR_EQUAL(&d[0], &p); } } return match; } static int ex_ip6_src_me(struct opcode_args *o) { return (o->is_ipv6 && search_ip6_addr_net(&o->args->f_id.src_ip6)); } static int ex_ip6_dst_me(struct opcode_args *o) { return (o->is_ipv6 && search_ip6_addr_net(&o->args->f_id.dst_ip6)); } static int ex_flow6id(struct opcode_args *o) { return (o->is_ipv6 && flow6id_match(o->args->f_id.flow_id6, (ipfw_insn_u32 *)o->cmd)); } static int ex_ext_hdr(struct opcode_args *o) { return (o->is_ipv6 && (o->ext_hd & ((ipfw_insn *)o->cmd)->arg1)); } static int ex_ip6(struct opcode_args *o) { return (o->is_ipv6); } #endif /* INET6 */ static int ex_ip4(struct opcode_args *o) { return (o->is_ipv4); } static int ex_tag(struct opcode_args *o) { int match = 0; struct mbuf *m = o->m; ipfw_insn *cmd = o->cmd; uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ? o->tablearg : cmd->arg1; /* Packet is already tagged with this tag? */ o->mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL); /* We have `untag' action when F_NOT flag is * present. And we must remove this mtag from * mbuf and reset `match' to zero (`match' will * be inversed later). * Otherwise we should allocate new mtag and * push it into mbuf. */ if (cmd->len & F_NOT) { /* `untag' action */ if (o->mtag != NULL) m_tag_delete(m, o->mtag); } else if (o->mtag == NULL) { if ((o->mtag = m_tag_alloc(MTAG_IPFW, tag, 0, M_NOWAIT)) != NULL) m_tag_prepend(m, o->mtag); } match = (cmd->len & F_NOT) ? 0: 1; return match; } static int ex_fib(struct opcode_args *o) { /* try match the specified fib */ if (o->args->f_id.fib == o->cmd->arg1) return 1; return 0; } static int ex_tagged(struct opcode_args *o) { int match = 0; struct m_tag *mtag = o->mtag; ipfw_insn *cmd = o->cmd; struct mbuf *m = o->m; uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ? o->tablearg : cmd->arg1; if (o->cmdlen == 1) { match = m_tag_locate(m, MTAG_IPFW, tag, NULL) != NULL; return match; } /* we have ranges */ for (mtag = m_tag_first(m); mtag != NULL && !match; mtag = m_tag_next(m, mtag)) { uint16_t *p; int i; if (mtag->m_tag_cookie != MTAG_IPFW) continue; p = ((ipfw_insn_u16 *)cmd)->ports; i = o->cmdlen - 1; for(; !match && i > 0; i--, p += 2) match = mtag->m_tag_id >= p[0] && mtag->m_tag_id <= p[1]; } return match; } /* * The second set of opcodes represents 'actions', * i.e. the terminal part of a rule once the packet * matches all previous patterns. * Typically there is only one action for each rule, * and the opcode is stored at the end of the rule * (but there are exceptions -- see below). * * In general, here we set retval and terminate the * outer loop. * XXX In order to do this we use the GOTO_DONE macro, see below. * * Exceptions: * O_COUNT and O_SKIPTO actions: * instead of terminating, we jump to the next rule * or to the SKIPTO target, XXX re-entering the inner loop * after setting the correct f, l and cmd. * * O_TAG, O_LOG and O_ALTQ action parameters: * perform some action and set match = 1; * * O_LIMIT and O_KEEP_STATE: these opcodes are * not real 'actions', and are stored right * before the 'action' part of the rule. * These opcodes try to install an entry in the * state tables; if successful, we continue with * the next opcode (match=1; break;), otherwise * the packet must be dropped * ('goto done' after setting retval); XXX * * O_PROBE_STATE and O_CHECK_STATE: these opcodes * cause a lookup of the state table, and a jump * to the 'action' part of the parent rule * ('goto check_body') if an entry is found, or * (CHECK_STATE only) a jump to the next rule if * the entry is not found ('goto next_rule'). * The result of the lookup is cached to make * further instances of these opcodes are * effectively NOPs. */ /* * Some of these functions break the switch and the loops * collecting some statistical data for the rules. * To do this we set the rule length and the 'done' flag. */ #define GOTO_DONE \ o->l = 0; /* break the inner loop */ \ o->done = 1; /* break the external loop */ \ return 1; /* return value does not matter */ /* used by O_LIMIT and O_KEEP_STATE */ static int ex_limit(struct opcode_args *o) { if (install_state(o->f, (ipfw_insn_limit *)o->cmd, o->args, o->tablearg)) { o->retval = IP_FW_DENY; GOTO_DONE; } return 1; } /* used by O_PROBE_STATE and O_CHECK_STATE */ static int ex_state(struct opcode_args *o) { ipfw_dyn_rule *q = o->q; struct ip_fw *f = o->f; /* * dynamic rules are checked at the first * keep-state or check-state occurrence, * with the result being stored in dyn_dir. * The compiler introduces a PROBE_STATE * instruction for us when we have a * KEEP_STATE (because PROBE_STATE needs * to be run first). */ if (o->dyn_dir == MATCH_UNKNOWN && (q = lookup_dyn_rule(&o->args->f_id, &(o->dyn_dir), o->proto == IPPROTO_TCP ? TCP(o->ulp) : NULL)) != NULL) { /* * Found dynamic entry, update stats * and jump to the 'action' part of * the parent rule. */ q->pcnt++; q->bcnt += o->pktlen; f = q->rule; o->cmd = ACTION_PTR(f); o->l = f->cmd_len - f->act_ofs; IPFW_DYN_UNLOCK(); /* goto check_body; */ o->cmdlen = 0; /* make null for() changes */ return 1; /* do not break to the external loop */ } /* * Dynamic entry not found. If CHECK_STATE, * skip to next rule, if PROBE_STATE just * ignore and continue with next opcode. */ if (o->cmd->opcode == O_CHECK_STATE) /* goto next_rule; */ o->l = 0; /* go to the next rule */ return 1; } static int ex_accept(struct opcode_args *o) { o->retval = 0; /* accept */ GOTO_DONE; } /* used by O_PIPE and O_QUEUE */ static int ex_pipe(struct opcode_args *o) { o->args->rule = o->f; /* report matching rule */ if (o->cmd->arg1 == IP_FW_TABLEARG) o->args->cookie = o->tablearg; else o->args->cookie = o->cmd->arg1; o->retval = IP_FW_DUMMYNET; GOTO_DONE; } /* used by O_DIVERT and O_TEE */ static int ex_divert(struct opcode_args *o) { struct divert_tag *dt; if (o->args->eh) /* not on layer 2 */ return 0; o->mtag = m_tag_get(PACKET_TAG_DIVERT, sizeof(struct divert_tag), M_NOWAIT); if (o->mtag == NULL) { /* XXX statistic */ /* drop packet */ IPFW_RUNLOCK(&V_layer3_chain); return (IP_FW_DENY); /* XXX not a match ?!?! maybe retval? */ } dt = (struct divert_tag *)(o->mtag+1); dt->cookie = o->f->rulenum; if (o->cmd->arg1 == IP_FW_TABLEARG) dt->info = o->tablearg; else dt->info = o->cmd->arg1; m_tag_prepend(o->m, o->mtag); o->retval = (o->cmd->opcode == O_DIVERT) ? IP_FW_DIVERT : IP_FW_TEE; GOTO_DONE; return 1; } /* used by O_COUNT and O_SKIPTO. * This is a non-terminal action so it does not set o->done, * and we must update statistics directly in this function. * The opcode should be the last one in the rule so it is * probably irrelevant to set a->l = 0 and perhaps even * the return value does not matter. */ static int ex_count(struct opcode_args *o) { struct ip_fw *f = o->f; f->pcnt++; /* update stats */ f->bcnt += o->pktlen; f->timestamp = time_uptime; if (o->cmd->opcode == O_COUNT) { /* goto next_rule; */ o->l = 0; /* exit the inner loop XXX probably unnecessary */ return 1; /* do not break the loop */ } /* handle skipto */ if (o->cmd->arg1 == IP_FW_TABLEARG) { f = lookup_next_rule(f, o->tablearg); } else { if (f->next_rule == NULL) lookup_next_rule(f, 0); f = f->next_rule; } /* * For a skipto, we should start from the new rule * (skipping disabled rules - the default should exist). * skip_or should be clear already. * The way to do it is by re-entering the inner loop * with the correct f, l and cmd. * but try to be robust. */ /* goto again; */ while (f && (V_set_disable & (1 << f->set))) f = f->next; /* update external pointer */ o->f = f; /* prepare to re-enter the inner loop. */ if (f) { /* make sure we have a rule */ o->l = f->cmd_len; o->cmd = f->cmd; } else { printf("%s default rule not found\n", __FUNCTION__); o->l = 0; /* this will break the inner loop */ } o->cmdlen = 0; /* reset loop condition */ return 1; /* do not break the loop */ } /* * Drop the packet and send a reject notice * if the packet is not ICMP (or is an ICMP * query), and it is not multicast/broadcast. * * This function will call a subset of callback * functions too. */ static int ex_reject(struct opcode_args *o) { if (o->hlen > 0 && o->is_ipv4 && o->offset == 0 && (o->proto != IPPROTO_ICMP || is_icmp_query(ICMP(o->ulp))) && !(o->m->m_flags & (M_BCAST|M_MCAST)) && !IN_MULTICAST(ntohl(o->dst_ip.s_addr))) { send_reject(o->args, o->cmd->arg1, o->ip_len, o->ip); o->m = o->args->m; } if (opcode_cbs[O_UNREACH6] != NULL) opcode_cbs[O_UNREACH6](o); return 0; } #ifdef INET6 static int ex_unreach6(struct opcode_args *o) { if (o->hlen > 0 && o->is_ipv6 && ((o->offset & IP6F_OFF_MASK) == 0) && (o->proto != IPPROTO_ICMPV6 || (is_icmp6_query(o->args->f_id.flags) == 1)) && !(o->m->m_flags & (M_BCAST|M_MCAST)) && !IN6_IS_ADDR_MULTICAST(&o->args->f_id.dst_ip6)) { send_reject6( o->args, o->cmd->arg1, o->hlen, (struct ip6_hdr *)o->ip); o->m = o->args->m; } if (opcode_cbs[O_DENY] != NULL) opcode_cbs[O_DENY](o); return 0; } #endif /* INET6 */ static int ex_deny(struct opcode_args *o) { o->retval = IP_FW_DENY; GOTO_DONE; } static int ex_forward_ip(struct opcode_args *o) { struct ip_fw_args *args = o->args; struct sockaddr_in *sa; sa = &(((ipfw_insn_sa *)o->cmd)->sa); if (args->eh) /* not valid on layer2 pkts */ return 0; if (!o->q || o->dyn_dir == MATCH_FORWARD) { if (sa->sin_addr.s_addr == INADDR_ANY) { bcopy(sa, &args->hopstore, sizeof(*sa)); args->hopstore.sin_addr.s_addr = htonl(o->tablearg); args->next_hop = &args->hopstore; } else { args->next_hop = sa; } } o->retval = IP_FW_PASS; GOTO_DONE; } /* used by O_NETGRAPH and O_NGTEE */ static int ex_netgraph(struct opcode_args *o) { o->args->rule = o->f; /* report matching rule */ if (o->cmd->arg1 == IP_FW_TABLEARG) o->args->cookie = o->tablearg; else o->args->cookie = o->cmd->arg1; o->retval = (o->cmd->opcode == O_NETGRAPH) ? IP_FW_NETGRAPH : IP_FW_NGTEE; GOTO_DONE; } static int ex_setfib(struct opcode_args *o) { o->f->pcnt++; /* update stats */ o->f->bcnt += o->pktlen; o->f->timestamp = time_uptime; M_SETFIB(o->m, o->cmd->arg1); o->args->f_id.fib = o->cmd->arg1; /* goto next_rule; */ o->l = 0; /* break the inner loop */ return 1; } static int ex_nat(struct opcode_args *o) { ipfw_insn *cmd = o->cmd; struct cfg_nat *t; int nat_id; if (IPFW_NAT_LOADED) { o->args->rule = o->f; /* Report matching rule. */ t = ((ipfw_insn_nat *)cmd)->nat; if (t == NULL) { nat_id = (cmd->arg1 == IP_FW_TABLEARG) ? o->tablearg : cmd->arg1; LOOKUP_NAT(V_layer3_chain, nat_id, t); if (t == NULL) { o->retval = IP_FW_DENY; GOTO_DONE; } if (cmd->arg1 != IP_FW_TABLEARG) ((ipfw_insn_nat *)cmd)->nat = t; } o->retval = ipfw_nat_ptr(o->args, t, o->m); } else o->retval = IP_FW_DENY; GOTO_DONE; return 1; } static int ex_reass(struct opcode_args *o) { int ip_off; struct mbuf *m = o->m; struct ip *ip = o->ip; o->f->pcnt++; o->f->bcnt += o->pktlen; ip_off = (o->args->eh != NULL) ? ntohs(ip->ip_off) : ip->ip_off; if (ip_off & (IP_MF | IP_OFFMASK)) { /* * ip_reass() expects len & off in host * byte order: fix them in case we come * from layer2. */ if (o->args->eh != NULL) { ip->ip_len = ntohs(ip->ip_len); ip->ip_off = ntohs(ip->ip_off); } m = ip_reass(m); o->args->m = m; /* * IP header checksum fixup after * reassembly and leave header * in network byte order. */ if (m != NULL) { int hlen; ip = mtod(m, struct ip *); hlen = ip->ip_hl << 2; /* revert len & off for layer2 pkts */ if (o->args->eh != NULL) ip->ip_len = htons(ip->ip_len); ip->ip_sum = 0; if (hlen == sizeof(struct ip)) ip->ip_sum = in_cksum_hdr(ip); else ip->ip_sum = in_cksum(m, hlen); o->retval = IP_FW_REASS; o->args->rule = o->f; GOTO_DONE } else { o->retval = IP_FW_DENY; GOTO_DONE } } o->l = 0; /* go to the next rule */ return 1; } #undef GOTO_DONE /* * fill the dispatching table with callbacks */ static void fill_opcodes_table(int(*o[0])(struct opcode_args *), int len) { int i; /* * The first set of opcodes compares the packet's * fields with some pattern, setting 'match' if a * match is found. At the end of the loop there is * logic to deal with F_NOT and F_OR flags associated * with the opcode. */ for (i = 0; i < len; i++) o[i] = ex_unimplemented; o[O_NOP] = ex_nop; o[O_FORWARD_MAC]= ex_unimplemented; o[O_GID] = ex_gid; o[O_UID] = ex_gid; o[O_JAIL] = ex_gid; o[O_RECV] = ex_recv; o[O_XMIT] = ex_xmit; o[O_VIA] = ex_via; o[O_MACADDR2] = ex_macaddr2; o[O_FRAG] = ex_frag; o[O_IN] = ex_in; o[O_LAYER2] = ex_layer2; o[O_DIVERTED] = ex_diverted; o[O_PROTO] = ex_proto; o[O_IP_SRC] = ex_ip_src; o[O_IP_SRC_ME] = ex_ip_src_me; o[O_IP_DST_SET] = ex_ip_set; o[O_IP_SRC_SET] = ex_ip_set; o[O_IP_DST] = ex_ip_dst; o[O_IP_DST_ME] = ex_ip_dst_me; o[O_ICMPTYPE] = ex_icmptype; o[O_IPOPT] = ex_ipopt; o[O_IPVER] = ex_ipver; o[O_IPPRECEDENCE]= ex_ipprecedence; o[O_IPTOS] = ex_iptos; o[O_TCPFLAGS] = ex_tcpflags; o[O_TCPOPTS] = ex_tcpopts; o[O_ICMP6TYPE] = ex_icmp6type; o[O_TCPSEQ] = ex_tcpseq; o[O_TCPACK] = ex_tcpack; o[O_TCPWIN] = ex_tcpwin; o[O_ESTAB] = ex_estab; o[O_ALTQ] = ex_altq; o[O_LOG] = ex_log; o[O_PROB] = ex_prob; o[O_VERREVPATH] = ex_verrevpath; o[O_VERSRCREACH]= ex_versrcreach; o[O_ANTISPOOF] = ex_antispoof; o[O_IPSEC] = ex_ipsec; #ifdef INET6 o[O_IP6_SRC] = ex_ip6_src; o[O_IP6_DST] = ex_ip6_dst; o[O_IP6_SRC_ME] = ex_ip6_src_me; o[O_IP6_DST_ME] = ex_ip6_dst_me; o[O_FLOW6ID] = ex_flow6id; o[O_EXT_HDR] = ex_ext_hdr; o[O_IP6] = ex_ip6; #endif o[O_IP4] = ex_ip4; o[O_FIB] = ex_fib; o[O_MAC_TYPE] = ex_mac_type; o[O_IP_SRC_LOOKUP] = ex_lookup; o[O_IP_DST_LOOKUP] = ex_lookup; o[O_IP_SRC_MASK] = ex_mask; o[O_IP_DST_MASK] = ex_mask; o[O_IP_SRCPORT] = ex_ip_port; o[O_IP_DSTPORT] = ex_ip_port; o[O_IPID] = ex_ipid; o[O_IPLEN] = ex_ipid; o[O_IPTTL] = ex_ipid; o[O_TCPDATALEN] = ex_tcpdatalen; #ifdef INET6 o[O_IP6_SRC_MASK] = ex_ip6_mask; o[O_IP6_DST_MASK] = ex_ip6_mask; #endif o[O_TAG] = ex_tag; o[O_TAGGED] = ex_tagged; /* actions */ o[O_LIMIT] = ex_limit; o[O_KEEP_STATE] = ex_limit; o[O_PROBE_STATE] = ex_state; o[O_CHECK_STATE] = ex_state; o[O_ACCEPT] = ex_accept; o[O_PIPE] = ex_pipe; o[O_QUEUE] = ex_pipe; o[O_DIVERT] = ex_divert; o[O_TEE] = ex_divert; o[O_COUNT] = ex_count; o[O_SKIPTO] = ex_count; o[O_REJECT] = ex_reject; #ifdef INET6 o[O_UNREACH6] = ex_unreach6; #endif o[O_DENY] = ex_deny; o[O_FORWARD_IP] = ex_forward_ip; o[O_NETGRAPH] = ex_netgraph; o[O_NGTEE] = ex_netgraph; o[O_SETFIB] = ex_setfib; o[O_NAT] = ex_nat; o[O_REASS] = ex_reass; } /* * The main check routine for the firewall. * * All arguments are in args so we can modify them and return them * back to the caller. * * Parameters: * * args->m (in/out) The packet; we set to NULL when/if we nuke it. * Starts with the IP header. * args->eh (in) Mac header if present, or NULL for layer3 packet. * args->L3offset Number of bytes bypassed if we came from L2. * e.g. often sizeof(eh) ** NOTYET ** * args->oif Outgoing interface, or NULL if packet is incoming. * The incoming interface is in the mbuf. (in) * args->divert_rule (in/out) * Skip up to the first rule past this rule number; * upon return, non-zero port number for divert or tee. * * args->rule Pointer to the last matching rule (in/out) * args->next_hop Socket we are forwarding to (out). * args->f_id Addresses grabbed from the packet (out) * args->cookie a cookie depending on rule action * * Return value: * * IP_FW_PASS the packet must be accepted * IP_FW_DENY the packet must be dropped * IP_FW_DIVERT divert packet, port in m_tag * IP_FW_TEE tee packet, port in m_tag * IP_FW_DUMMYNET to dummynet, pipe in args->cookie * IP_FW_NETGRAPH into netgraph, cookie args->cookie * */ /* * pullup_to() makes sure that mbuf len + s is contiguous, * then it sets ulp to point at the offset "len" in the mbuf. * WARNING: the pointer might become stale after other pullups * (but we never use it this way). * Return 0 on success, 1 on error. */ static int pullup_to(struct opcode_args *o, uint32_t s) { int x = o->hlen + s; if ((o->m)->m_len < x) return 1; o->ulp = (mtod(o->m, char *) + (o->hlen)); return 0; } /* * The main check routine for the firewall. * * All arguments are in args so we can modify them and return them * back to the caller. * * Parameters: * * args->m (in/out) The packet; we set to NULL when/if we nuke it. * Starts with the IP header. * args->eh (in) Mac header if present, or NULL for layer3 packet. * args->L3offset Number of bytes bypassed if we came from L2. * e.g. often sizeof(eh) ** NOTYET ** * args->oif Outgoing interface, or NULL if packet is incoming. * The incoming interface is in the mbuf. (in) * args->divert_rule (in/out) * Skip up to the first rule past this rule number; * upon return, non-zero port number for divert or tee. * * args->rule Pointer to the last matching rule (in/out) * args->next_hop Socket we are forwarding to (out). * args->f_id Addresses grabbed from the packet (out) * args->cookie a cookie depending on rule action * * Return value: * * IP_FW_PASS the packet must be accepted * IP_FW_DENY the packet must be dropped * IP_FW_DIVERT divert packet, port in m_tag * IP_FW_TEE tee packet, port in m_tag * IP_FW_DUMMYNET to dummynet, pipe in args->cookie * IP_FW_NETGRAPH into netgraph, cookie args->cookie * */ int ipfw_chk(struct ip_fw_args *args) { INIT_VNET_INET(curvnet); INIT_VNET_IPFW(curvnet); struct opcode_args o; /* arguments for the opcode callback */ struct ip_fw_chain *chain = &V_layer3_chain; if (args->m->m_flags & M_SKIP_FIREWALL) return (IP_FW_PASS); /* accept */ /* initialize the callback argument, * this will initialize o->f_id.proto to 0 * should be marked as invalid but * 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */ memset(&o, 0, sizeof(struct opcode_args)); /* initialize arguments for the opcode callback */ o.m = args->m; o.pktlen = o.m->m_pkthdr.len; args->f_id.fib = M_GETFIB(o.m); /* note mbuf not altered */ o.args = args; o.ip = mtod(o.m, struct ip *); o.oif = args->oif; o.dyn_dir = MATCH_UNKNOWN; o.pktlen = o.m->m_pkthdr.len; /* * if we have an ether header, */ if (args->eh) o.etype = ntohs(args->eh->ether_type); /* Identify IP packets and fill up variables. */ if (o.pktlen >= sizeof(struct ip6_hdr) && (args->eh == NULL || o.etype == ETHERTYPE_IPV6) && o.ip->ip_v == 6) { struct ip6_hdr *ip6 = (struct ip6_hdr *)o.ip; o.is_ipv6 = 1; args->f_id.addr_type = 6; o.hlen = sizeof(struct ip6_hdr); o.proto = ip6->ip6_nxt; /* Search extension headers to find upper layer protocols */ while (o.ulp == NULL) { switch (o.proto) { case IPPROTO_ICMPV6: if ( pullup_to(&o, sizeof(struct icmp6_hdr)) ) goto pullup_failed; args->f_id.flags = ICMP6(o.ulp)->icmp6_type; break; case IPPROTO_TCP: if ( pullup_to(&o, sizeof(struct tcphdr)) ) goto pullup_failed; o.dst_port = TCP(o.ulp)->th_dport; o.src_port = TCP(o.ulp)->th_sport; args->f_id.flags = TCP(o.ulp)->th_flags; break; case IPPROTO_SCTP: if ( pullup_to(&o, sizeof(struct sctphdr)) ) goto pullup_failed; o.src_port = SCTP(o.ulp)->src_port; o.dst_port = SCTP(o.ulp)->dest_port; break; case IPPROTO_UDP: if ( pullup_to(&o, sizeof(struct udphdr)) ) goto pullup_failed; o.dst_port = UDP(o.ulp)->uh_dport; o.src_port = UDP(o.ulp)->uh_sport; break; case IPPROTO_HOPOPTS: /* RFC 2460 */ if ( pullup_to(&o, sizeof(struct ip6_hbh)) ) goto pullup_failed; o.ext_hd |= EXT_HOPOPTS; o.hlen += (((struct ip6_hbh *)o.ulp)->ip6h_len + 1) << 3; o.proto = ((struct ip6_hbh *)o.ulp)->ip6h_nxt; o.ulp = NULL; break; case IPPROTO_ROUTING: /* RFC 2460 */ if ( pullup_to(&o, sizeof(struct ip6_rthdr)) ) goto pullup_failed; switch (((struct ip6_rthdr *)o.ulp)->ip6r_type) { case 0: o.ext_hd |= EXT_RTHDR0; break; case 2: o.ext_hd |= EXT_RTHDR2; break; default: printf("IPFW2: IPV6 - Unknown Routing " "Header type(%d)\n", ((struct ip6_rthdr *)o.ulp)->ip6r_type); if (V_fw_deny_unknown_exthdrs) return (IP_FW_DENY); break; } o.ext_hd |= EXT_ROUTING; o.hlen += (((struct ip6_rthdr *)o.ulp)->ip6r_len + 1) << 3; o.proto = ((struct ip6_rthdr *)o.ulp)->ip6r_nxt; o.ulp = NULL; break; case IPPROTO_FRAGMENT: /* RFC 2460 */ if ( pullup_to(&o, sizeof(struct ip6_frag)) ) goto pullup_failed; o.ext_hd |= EXT_FRAGMENT; o.hlen += sizeof (struct ip6_frag); o.proto = ((struct ip6_frag *)o.ulp)->ip6f_nxt; o.offset = ((struct ip6_frag *)o.ulp)->ip6f_offlg & IP6F_OFF_MASK; /* Add IP6F_MORE_FRAG for offset of first * fragment to be != 0. */ o.offset |= ((struct ip6_frag *)o.ulp)->ip6f_offlg & IP6F_MORE_FRAG; if (o.offset == 0) { printf("IPFW2: IPV6 - Invalid Fragment " "Header\n"); if (V_fw_deny_unknown_exthdrs) return (IP_FW_DENY); break; } args->f_id.frag_id6 = ntohl(((struct ip6_frag *)o.ulp)->ip6f_ident); o.ulp = NULL; break; case IPPROTO_DSTOPTS: /* RFC 2460 */ if ( pullup_to(&o, sizeof(struct ip6_hbh)) ) goto pullup_failed; o.ext_hd |= EXT_DSTOPTS; o.hlen += (((struct ip6_hbh *)o.ulp)->ip6h_len + 1) << 3; o.proto = ((struct ip6_hbh *)o.ulp)->ip6h_nxt; o.ulp = NULL; break; case IPPROTO_AH: /* RFC 2402 */ if ( pullup_to(&o, sizeof(struct ip6_ext)) ) goto pullup_failed; o.ext_hd |= EXT_AH; o.hlen += (((struct ip6_ext *)o.ulp)->ip6e_len + 2) << 2; o.proto = ((struct ip6_ext *)o.ulp)->ip6e_nxt; o.ulp = NULL; break; case IPPROTO_ESP: /* RFC 2406 */ if ( pullup_to(&o, sizeof(uint32_t)) ) /* SPI, Seq# */ goto pullup_failed; /* Anything past Seq# is variable length and * data past this ext. header is encrypted. */ o.ext_hd |= EXT_ESP; break; case IPPROTO_NONE: /* RFC 2460 */ /* * Packet ends here, and IPv6 header has * already been pulled up. If ip6e_len!=0 * then octets must be ignored. */ o.ulp = o.ip; /* non-NULL to get out of loop. */ break; case IPPROTO_OSPFIGP: /* XXX OSPF header check? */ if ( pullup_to(&o, sizeof(struct ip6_ext)) ) goto pullup_failed; break; case IPPROTO_PIM: /* XXX PIM header check? */ if ( pullup_to(&o, sizeof(struct pim)) ) goto pullup_failed; break; case IPPROTO_CARP: if ( pullup_to(&o, sizeof(struct carp_header)) ) goto pullup_failed; if (((struct carp_header *)o.ulp)->carp_version != CARP_VERSION) return (IP_FW_DENY); if (((struct carp_header *)o.ulp)->carp_type != CARP_ADVERTISEMENT) return (IP_FW_DENY); break; case IPPROTO_IPV6: /* RFC 2893 */ if ( pullup_to(&o, sizeof(struct ip6_hdr)) ) goto pullup_failed; break; case IPPROTO_IPV4: /* RFC 2893 */ if ( pullup_to(&o, sizeof(struct ip)) ) goto pullup_failed; break; default: printf("IPFW2: IPV6 - Unknown Extension " "Header(%d), ext_hd=%x\n", o.proto, o.ext_hd); if (V_fw_deny_unknown_exthdrs) return (IP_FW_DENY); if ( pullup_to(&o, sizeof(struct ip6_ext)) ) goto pullup_failed; break; } /* switch */ } o.ip = mtod(o.m, struct ip *); ip6 = (struct ip6_hdr *)o.ip; args->f_id.src_ip6 = ip6->ip6_src; args->f_id.dst_ip6 = ip6->ip6_dst; args->f_id.src_ip = 0; args->f_id.dst_ip = 0; args->f_id.flow_id6 = ntohl(ip6->ip6_flow); } else if (o.pktlen >= sizeof(struct ip) && (args->eh == NULL || o.etype == ETHERTYPE_IP) && o.ip->ip_v == 4) { o.is_ipv4 = 1; o.hlen = o.ip->ip_hl << 2; args->f_id.addr_type = 4; /* * Collect parameters into local variables for faster matching. */ o.proto = o.ip->ip_p; o.src_ip = o.ip->ip_src; o.dst_ip = o.ip->ip_dst; if (1 || args->eh != NULL) { /* layer 2 packets are as on the wire */ o.offset = ntohs(o.ip->ip_off) & IP_OFFMASK; o.ip_len = ntohs(o.ip->ip_len); } else { o.offset = o.ip->ip_off & IP_OFFMASK; o.ip_len = o.ip->ip_len; } o.pktlen = o.ip_len < o.pktlen ? o.ip_len : o.pktlen; if (o.offset == 0) { switch (o.proto) { case IPPROTO_TCP: if ( pullup_to(&o, sizeof(struct tcphdr)) ) goto pullup_failed; o.dst_port = TCP(o.ulp)->th_dport; o.src_port = TCP(o.ulp)->th_sport; args->f_id.flags = TCP(o.ulp)->th_flags; break; case IPPROTO_UDP: if ( pullup_to(&o, sizeof(struct udphdr)) ) goto pullup_failed; o.dst_port = UDP(o.ulp)->uh_dport; o.src_port = UDP(o.ulp)->uh_sport; break; case IPPROTO_ICMP: if ( pullup_to(&o, sizeof(struct icmphdr)) ) goto pullup_failed; args->f_id.flags = ICMP(o.ulp)->icmp_type; break; default: break; } } o.ip = mtod(o.m, struct ip *); args->f_id.src_ip = ntohl(o.src_ip.s_addr); args->f_id.dst_ip = ntohl(o.dst_ip.s_addr); } if (o.proto) { /* we may have port numbers, store them */ args->f_id.proto = o.proto; args->f_id.src_port = o.src_port = ntohs(o.src_port); args->f_id.dst_port = o.dst_port = ntohs(o.dst_port); } IPFW_RLOCK(chain); o.mtag = m_tag_find(o.m, PACKET_TAG_DIVERT, NULL); if (args->rule) { /* * Packet has already been tagged. Look for the next rule * to restart processing. */ o.f = args->rule->next_rule; if (o.f == NULL) o.f = lookup_next_rule(args->rule, 0); } else { /* * Find the starting rule. It can be either the first * one, or the one after divert_rule if asked so. */ int skipto = o.mtag ? divert_cookie(o.mtag) : 0; o.f = chain->rules; if (args->eh == NULL && skipto != 0) { if (skipto >= IPFW_DEFAULT_RULE) { IPFW_RUNLOCK(chain); return (IP_FW_DENY); /* invalid */ } while (o.f && o.f->rulenum <= skipto) o.f = o.f->next; if (o.f == NULL) { /* drop packet */ IPFW_RUNLOCK(chain); return (IP_FW_DENY); } } } /* reset divert rule to avoid confusion later */ if (o.mtag) { o.divinput_flags = divert_info(o.mtag) & (IP_FW_DIVERT_OUTPUT_FLAG | IP_FW_DIVERT_LOOPBACK_FLAG); m_tag_delete(o.m, o.mtag); } /* * Now scan the rules, and parse microinstructions for each rule. */ for (; o.f; o.f = o.f->next) { /* again: */ if ( V_set_disable & (1 << o.f->set) ) continue; o.tablearg = 0; o.skip_or = 0; for (o.l = o.f->cmd_len, o.cmd = o.f->cmd ; o.l > 0 ; o.l -= o.cmdlen, o.cmd += o.cmdlen) { int match; int or_bit = o.cmd->len & F_OR; /* * check_body is a jump target used when we find a * CHECK_STATE, and need to jump to the body of * the target rule. */ /* check_body: */ o.cmdlen = F_LEN(o.cmd); /* * An OR block (insn_1 || .. || insn_n) has the * F_OR bit set in all but the last instruction. * The first match will set "skip_or", and cause * the following instructions to be skipped until * past the one with the F_OR bit clear. */ if (o.skip_or) { /* skip this instruction */ o.skip_or = or_bit; continue; } /* call the dispatchin table */ /* make sure all non-existing instructions have * a function which breaks the rule evaluation. * The xor is to negate the result in case of F_NOT */ match = ((o.cmd->len & F_NOT) ? 1 : 0) ^ opcode_cbs[o.cmd->opcode](&o); /* * some microinstructions (those for actions) may * change o.cmd or o.f and may set o.l, o.cmdlen * and o.done to force exiting from one or both loops. * They must return 'match' (1) that combined with * F_NOT (never set by action rules), does not * execute the 'break' below. * We must be careful in executing the block below. */ if (match) { o.skip_or = or_bit; } else { if (!or_bit) /* not an OR block, */ break; /* try next rule */ } } /* end of inner for, scan opcodes */ if (o.done) break; } /* end of outer for, scan rules */ /* done: */ if (o.done) { /* Update statistics */ o.f->pcnt++; o.f->bcnt += o.pktlen; o.f->timestamp = time_uptime; IPFW_RUNLOCK(chain); return (o.retval); } printf("ipfw: ouch!, skip past end of rules, denying packet\n"); IPFW_RUNLOCK(chain); return (IP_FW_DENY); pullup_failed: if (V_fw_verbose) printf("ipfw: pullup failed\n"); return (IP_FW_DENY); } /* * When a rule is added/deleted, clear the next_rule pointers in all rules. * These will be reconstructed on the fly as packets are matched. */ static void flush_rule_ptrs(struct ip_fw_chain *chain) { struct ip_fw *rule; IPFW_WLOCK_ASSERT(chain); for (rule = chain->rules; rule; rule = rule->next) rule->next_rule = NULL; } /* * Add a new rule to the list. Copy the rule into a malloc'ed area, then * possibly create a rule number and add the rule to the list. * Update the rule_number in the input struct so the caller knows it as well. */ static int add_rule(struct ip_fw_chain *chain, struct ip_fw *input_rule) { INIT_VNET_IPFW(curvnet); struct ip_fw *rule, *f, *prev; int l = RULESIZE(input_rule); if (chain->rules == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE) return (EINVAL); rule = malloc(l, M_IPFW, M_NOWAIT | M_ZERO); if (rule == NULL) return (ENOSPC); bcopy(input_rule, rule, l); rule->next = NULL; rule->next_rule = NULL; rule->pcnt = 0; rule->bcnt = 0; rule->timestamp = 0; IPFW_WLOCK(chain); if (chain->rules == NULL) { /* default rule */ chain->rules = rule; goto done; } /* * If rulenum is 0, find highest numbered rule before the * default rule, and add autoinc_step */ if (V_autoinc_step < 1) V_autoinc_step = 1; else if (V_autoinc_step > 1000) V_autoinc_step = 1000; if (rule->rulenum == 0) { /* * locate the highest numbered rule before default */ for (f = chain->rules; f; f = f->next) { if (f->rulenum == IPFW_DEFAULT_RULE) break; rule->rulenum = f->rulenum; } if (rule->rulenum < IPFW_DEFAULT_RULE - V_autoinc_step) rule->rulenum += V_autoinc_step; input_rule->rulenum = rule->rulenum; } /* * Now insert the new rule in the right place in the sorted list. */ for (prev = NULL, f = chain->rules; f; prev = f, f = f->next) { if (f->rulenum > rule->rulenum) { /* found the location */ if (prev) { rule->next = f; prev->next = rule; } else { /* head insert */ rule->next = chain->rules; chain->rules = rule; } break; } } flush_rule_ptrs(chain); done: V_static_count++; V_static_len += l; IPFW_WUNLOCK(chain); DEB(printf("ipfw: installed rule %d, static count now %d\n", rule->rulenum, V_static_count);) return (0); } /** * Remove a static rule (including derived * dynamic rules) * and place it on the ``reap list'' for later reclamation. * The caller is in charge of clearing rule pointers to avoid * dangling pointers. * @return a pointer to the next entry. * Arguments are not checked, so they better be correct. */ static struct ip_fw * remove_rule(struct ip_fw_chain *chain, struct ip_fw *rule, struct ip_fw *prev) { INIT_VNET_IPFW(curvnet); struct ip_fw *n; int l = RULESIZE(rule); IPFW_WLOCK_ASSERT(chain); n = rule->next; IPFW_DYN_LOCK(); remove_dyn_rule(rule, NULL /* force removal */); IPFW_DYN_UNLOCK(); if (prev == NULL) chain->rules = n; else prev->next = n; V_static_count--; V_static_len -= l; rule->next = chain->reap; chain->reap = rule; return n; } /* * Hook for cleaning up dummynet when an ipfw rule is deleted. * Set/cleared when dummynet module is loaded/unloaded. */ void (*ip_dn_ruledel_ptr)(void *) = NULL; /** * Reclaim storage associated with a list of rules. This is * typically the list created using remove_rule. */ static void reap_rules(struct ip_fw *head) { struct ip_fw *rule; while ((rule = head) != NULL) { head = head->next; if (ip_dn_ruledel_ptr) ip_dn_ruledel_ptr(rule); free(rule, M_IPFW); } } /* * Remove all rules from a chain (except rules in set RESVD_SET * unless kill_default = 1). The caller is responsible for * reclaiming storage for the rules left in chain->reap. */ static void free_chain(struct ip_fw_chain *chain, int kill_default) { struct ip_fw *prev, *rule; IPFW_WLOCK_ASSERT(chain); flush_rule_ptrs(chain); /* more efficient to do outside the loop */ for (prev = NULL, rule = chain->rules; rule ; ) if (kill_default || rule->set != RESVD_SET) rule = remove_rule(chain, rule, prev); else { prev = rule; rule = rule->next; } } /** * Remove all rules with given number, and also do set manipulation. * Assumes chain != NULL && *chain != NULL. * * The argument is an u_int32_t. The low 16 bit are the rule or set number, * the next 8 bits are the new set, the top 8 bits are the command: * * 0 delete rules with given number * 1 delete rules with given set number * 2 move rules with given number to new set * 3 move rules with given set number to new set * 4 swap sets with given numbers * 5 delete rules with given number and with given set number */ static int del_entry(struct ip_fw_chain *chain, u_int32_t arg) { struct ip_fw *prev = NULL, *rule; u_int16_t rulenum; /* rule or old_set */ u_int8_t cmd, new_set; rulenum = arg & 0xffff; cmd = (arg >> 24) & 0xff; new_set = (arg >> 16) & 0xff; if (cmd > 5 || new_set > RESVD_SET) return EINVAL; if (cmd == 0 || cmd == 2 || cmd == 5) { if (rulenum >= IPFW_DEFAULT_RULE) return EINVAL; } else { if (rulenum > RESVD_SET) /* old_set */ return EINVAL; } IPFW_WLOCK(chain); rule = chain->rules; chain->reap = NULL; switch (cmd) { case 0: /* delete rules with given number */ /* * locate first rule to delete */ for (; rule->rulenum < rulenum; prev = rule, rule = rule->next) ; if (rule->rulenum != rulenum) { IPFW_WUNLOCK(chain); return EINVAL; } /* * flush pointers outside the loop, then delete all matching * rules. prev remains the same throughout the cycle. */ flush_rule_ptrs(chain); while (rule->rulenum == rulenum) rule = remove_rule(chain, rule, prev); break; case 1: /* delete all rules with given set number */ flush_rule_ptrs(chain); rule = chain->rules; while (rule->rulenum < IPFW_DEFAULT_RULE) if (rule->set == rulenum) rule = remove_rule(chain, rule, prev); else { prev = rule; rule = rule->next; } break; case 2: /* move rules with given number to new set */ rule = chain->rules; for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next) if (rule->rulenum == rulenum) rule->set = new_set; break; case 3: /* move rules with given set number to new set */ for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next) if (rule->set == rulenum) rule->set = new_set; break; case 4: /* swap two sets */ for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next) if (rule->set == rulenum) rule->set = new_set; else if (rule->set == new_set) rule->set = rulenum; break; case 5: /* delete rules with given number and with given set number. * rulenum - given rule number; * new_set - given set number. */ for (; rule->rulenum < rulenum; prev = rule, rule = rule->next) ; if (rule->rulenum != rulenum) { IPFW_WUNLOCK(chain); return (EINVAL); } flush_rule_ptrs(chain); while (rule->rulenum == rulenum) { if (rule->set == new_set) rule = remove_rule(chain, rule, prev); else { prev = rule; rule = rule->next; } } } /* * Look for rules to reclaim. We grab the list before * releasing the lock then reclaim them w/o the lock to * avoid a LOR with dummynet. */ rule = chain->reap; chain->reap = NULL; IPFW_WUNLOCK(chain); if (rule) reap_rules(rule); return 0; } /* * Clear counters for a specific rule. * The enclosing "table" is assumed locked. */ static void clear_counters(struct ip_fw *rule, int log_only) { ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule); if (log_only == 0) { rule->bcnt = rule->pcnt = 0; rule->timestamp = 0; } if (l->o.opcode == O_LOG) l->log_left = l->max_log; } /** * Reset some or all counters on firewall rules. * The argument `arg' is an u_int32_t. The low 16 bit are the rule number, * the next 8 bits are the set number, the top 8 bits are the command: * 0 work with rules from all set's; * 1 work with rules only from specified set. * Specified rule number is zero if we want to clear all entries. * log_only is 1 if we only want to reset logs, zero otherwise. */ static int zero_entry(struct ip_fw_chain *chain, u_int32_t arg, int log_only) { INIT_VNET_IPFW(curvnet); struct ip_fw *rule; char *msg; uint16_t rulenum = arg & 0xffff; uint8_t set = (arg >> 16) & 0xff; uint8_t cmd = (arg >> 24) & 0xff; if (cmd > 1) return (EINVAL); if (cmd == 1 && set > RESVD_SET) return (EINVAL); IPFW_WLOCK(chain); if (rulenum == 0) { V_norule_counter = 0; for (rule = chain->rules; rule; rule = rule->next) { /* Skip rules from another set. */ if (cmd == 1 && rule->set != set) continue; clear_counters(rule, log_only); } msg = log_only ? "All logging counts reset" : "Accounting cleared"; } else { int cleared = 0; /* * We can have multiple rules with the same number, so we * need to clear them all. */ for (rule = chain->rules; rule; rule = rule->next) if (rule->rulenum == rulenum) { while (rule && rule->rulenum == rulenum) { if (cmd == 0 || rule->set == set) clear_counters(rule, log_only); rule = rule->next; } cleared = 1; break; } if (!cleared) { /* we did not find any matching rules */ IPFW_WUNLOCK(chain); return (EINVAL); } msg = log_only ? "logging count reset" : "cleared"; } IPFW_WUNLOCK(chain); if (V_fw_verbose) { int lev = LOG_SECURITY | LOG_NOTICE; if (rulenum) log(lev, "ipfw: Entry %d %s.\n", rulenum, msg); else log(lev, "ipfw: %s.\n", msg); } return (0); } /* * Check validity of the structure before insert. * Fortunately rules are simple, so this mostly need to check rule sizes. */ static int check_ipfw_struct(struct ip_fw *rule, int size) { int l, cmdlen = 0; int have_action=0; ipfw_insn *cmd; if (size < sizeof(*rule)) { printf("ipfw: rule too short\n"); return (EINVAL); } /* first, check for valid size */ l = RULESIZE(rule); if (l != size) { printf("ipfw: size mismatch (have %d want %d)\n", size, l); return (EINVAL); } if (rule->act_ofs >= rule->cmd_len) { printf("ipfw: bogus action offset (%u > %u)\n", rule->act_ofs, rule->cmd_len - 1); return (EINVAL); } /* * Now go for the individual checks. Very simple ones, basically only * instruction sizes. */ for (l = rule->cmd_len, cmd = rule->cmd ; l > 0 ; l -= cmdlen, cmd += cmdlen) { cmdlen = F_LEN(cmd); if (cmdlen > l) { printf("ipfw: opcode %d size truncated\n", cmd->opcode); return EINVAL; } DEB(printf("ipfw: opcode %d\n", cmd->opcode);) switch (cmd->opcode) { case O_PROBE_STATE: case O_KEEP_STATE: case O_PROTO: case O_IP_SRC_ME: case O_IP_DST_ME: case O_LAYER2: case O_IN: case O_FRAG: case O_DIVERTED: case O_IPOPT: case O_IPTOS: case O_IPPRECEDENCE: case O_IPVER: case O_TCPWIN: case O_TCPFLAGS: case O_TCPOPTS: case O_ESTAB: case O_VERREVPATH: case O_VERSRCREACH: case O_ANTISPOOF: case O_IPSEC: #ifdef INET6 case O_IP6_SRC_ME: case O_IP6_DST_ME: case O_EXT_HDR: case O_IP6: #endif case O_IP4: case O_TAG: if (cmdlen != F_INSN_SIZE(ipfw_insn)) goto bad_size; break; case O_FIB: if (cmdlen != F_INSN_SIZE(ipfw_insn)) goto bad_size; if (cmd->arg1 >= rt_numfibs) { printf("ipfw: invalid fib number %d\n", cmd->arg1); return EINVAL; } break; case O_SETFIB: if (cmdlen != F_INSN_SIZE(ipfw_insn)) goto bad_size; if (cmd->arg1 >= rt_numfibs) { printf("ipfw: invalid fib number %d\n", cmd->arg1); return EINVAL; } goto check_action; case O_UID: case O_GID: case O_JAIL: case O_IP_SRC: case O_IP_DST: case O_TCPSEQ: case O_TCPACK: case O_PROB: case O_ICMPTYPE: if (cmdlen != F_INSN_SIZE(ipfw_insn_u32)) goto bad_size; break; case O_LIMIT: if (cmdlen != F_INSN_SIZE(ipfw_insn_limit)) goto bad_size; break; case O_LOG: if (cmdlen != F_INSN_SIZE(ipfw_insn_log)) goto bad_size; ((ipfw_insn_log *)cmd)->log_left = ((ipfw_insn_log *)cmd)->max_log; break; case O_IP_SRC_MASK: case O_IP_DST_MASK: /* only odd command lengths */ if ( !(cmdlen & 1) || cmdlen > 31) goto bad_size; break; case O_IP_SRC_SET: case O_IP_DST_SET: if (cmd->arg1 == 0 || cmd->arg1 > 256) { printf("ipfw: invalid set size %d\n", cmd->arg1); return EINVAL; } if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) + (cmd->arg1+31)/32 ) goto bad_size; break; case O_IP_SRC_LOOKUP: case O_IP_DST_LOOKUP: if (cmd->arg1 >= IPFW_TABLES_MAX) { printf("ipfw: invalid table number %d\n", cmd->arg1); return (EINVAL); } if (cmdlen != F_INSN_SIZE(ipfw_insn) && cmdlen != F_INSN_SIZE(ipfw_insn_u32)) goto bad_size; break; case O_MACADDR2: if (cmdlen != F_INSN_SIZE(ipfw_insn_mac)) goto bad_size; break; case O_NOP: case O_IPID: case O_IPTTL: case O_IPLEN: case O_TCPDATALEN: case O_TAGGED: if (cmdlen < 1 || cmdlen > 31) goto bad_size; break; case O_MAC_TYPE: case O_IP_SRCPORT: case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */ if (cmdlen < 2 || cmdlen > 31) goto bad_size; break; case O_RECV: case O_XMIT: case O_VIA: if (cmdlen != F_INSN_SIZE(ipfw_insn_if)) goto bad_size; break; case O_ALTQ: if (cmdlen != F_INSN_SIZE(ipfw_insn_altq)) goto bad_size; break; case O_PIPE: case O_QUEUE: if (cmdlen != F_INSN_SIZE(ipfw_insn)) goto bad_size; goto check_action; case O_FORWARD_IP: #ifdef IPFIREWALL_FORWARD if (cmdlen != F_INSN_SIZE(ipfw_insn_sa)) goto bad_size; goto check_action; #else return EINVAL; #endif case O_DIVERT: case O_TEE: if (ip_divert_ptr == NULL) return EINVAL; else goto check_size; case O_NETGRAPH: case O_NGTEE: if (!NG_IPFW_LOADED) return EINVAL; else goto check_size; case O_NAT: if (!IPFW_NAT_LOADED) return EINVAL; if (cmdlen != F_INSN_SIZE(ipfw_insn_nat)) goto bad_size; goto check_action; case O_FORWARD_MAC: /* XXX not implemented yet */ case O_CHECK_STATE: case O_COUNT: case O_ACCEPT: case O_DENY: case O_REJECT: #ifdef INET6 case O_UNREACH6: #endif case O_SKIPTO: case O_REASS: check_size: if (cmdlen != F_INSN_SIZE(ipfw_insn)) goto bad_size; check_action: if (have_action) { printf("ipfw: opcode %d, multiple actions" " not allowed\n", cmd->opcode); return EINVAL; } have_action = 1; if (l != cmdlen) { printf("ipfw: opcode %d, action must be" " last opcode\n", cmd->opcode); return EINVAL; } break; #ifdef INET_ case O_IP6_SRC: case O_IP6_DST: if (cmdlen != F_INSN_SIZE(struct in6_addr) + F_INSN_SIZE(ipfw_insn)) goto bad_size; break; case O_FLOW6ID: if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) + ((ipfw_insn_u32 *)cmd)->o.arg1) goto bad_size; break; case O_IP6_SRC_MASK: case O_IP6_DST_MASK: if ( !(cmdlen & 1) || cmdlen > 127) goto bad_size; break; case O_ICMP6TYPE: if( cmdlen != F_INSN_SIZE( ipfw_insn_icmp6 ) ) goto bad_size; break; #endif default: switch (cmd->opcode) { #ifndef INET6 case O_IP6_SRC_ME: case O_IP6_DST_ME: case O_EXT_HDR: case O_IP6: case O_UNREACH6: case O_IP6_SRC: case O_IP6_DST: case O_FLOW6ID: case O_IP6_SRC_MASK: case O_IP6_DST_MASK: case O_ICMP6TYPE: printf("ipfw: no IPv6 support in kernel\n"); return EPROTONOSUPPORT; #endif default: printf("ipfw: opcode %d, unknown opcode\n", cmd->opcode); return EINVAL; } } } if (have_action == 0) { printf("ipfw: missing action\n"); return EINVAL; } return 0; bad_size: printf("ipfw: opcode %d size %d wrong\n", cmd->opcode, cmdlen); return EINVAL; } /* * Copy the static and dynamic rules to the supplied buffer * and return the amount of space actually used. */ static size_t ipfw_getrules(struct ip_fw_chain *chain, void *buf, size_t space) { INIT_VNET_IPFW(curvnet); char *bp = buf; char *ep = bp + space; struct ip_fw *rule; int i; time_t boot_seconds; boot_seconds = boottime.tv_sec; /* XXX this can take a long time and locking will block packet flow */ IPFW_RLOCK(chain); for (rule = chain->rules; rule ; rule = rule->next) { /* * Verify the entry fits in the buffer in case the * rules changed between calculating buffer space and * now. This would be better done using a generation * number but should suffice for now. */ i = RULESIZE(rule); if (bp + i <= ep) { bcopy(rule, bp, i); /* * XXX HACK. Store the disable mask in the "next" * pointer in a wild attempt to keep the ABI the same. * Why do we do this on EVERY rule? */ bcopy(&V_set_disable, &(((struct ip_fw *)bp)->next_rule), sizeof(V_set_disable)); if (((struct ip_fw *)bp)->timestamp) ((struct ip_fw *)bp)->timestamp += boot_seconds; bp += i; } } IPFW_RUNLOCK(chain); if (V_ipfw_dyn_v) { ipfw_dyn_rule *p, *last = NULL; IPFW_DYN_LOCK(); for (i = 0 ; i < V_curr_dyn_buckets; i++) for (p = V_ipfw_dyn_v[i] ; p != NULL; p = p->next) { if (bp + sizeof *p <= ep) { ipfw_dyn_rule *dst = (ipfw_dyn_rule *)bp; bcopy(p, dst, sizeof *p); bcopy(&(p->rule->rulenum), &(dst->rule), sizeof(p->rule->rulenum)); /* * store set number into high word of * dst->rule pointer. */ bcopy(&(p->rule->set), (char *)&dst->rule + sizeof(p->rule->rulenum), sizeof(p->rule->set)); /* * store a non-null value in "next". * The userland code will interpret a * NULL here as a marker * for the last dynamic rule. */ bcopy(&dst, &dst->next, sizeof(dst)); last = dst; dst->expire = TIME_LEQ(dst->expire, time_uptime) ? 0 : dst->expire - time_uptime ; bp += sizeof(ipfw_dyn_rule); } } IPFW_DYN_UNLOCK(); if (last != NULL) /* mark last dynamic rule */ bzero(&last->next, sizeof(last)); } return (bp - (char *)buf); } /** * {set|get}sockopt parser. */ static int ipfw_ctl(struct sockopt *sopt) { #define RULE_MAXSIZE (256*sizeof(u_int32_t)) INIT_VNET_IPFW(curvnet); int error; size_t size; struct ip_fw *buf, *rule; u_int32_t rulenum[2]; error = priv_check(sopt->sopt_td, PRIV_NETINET_IPFW); if (error) return (error); /* * Disallow modifications in really-really secure mode, but still allow * the logging counters to be reset. */ if (sopt->sopt_name == IP_FW_ADD || (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) { error = securelevel_ge(sopt->sopt_td->td_ucred, 3); if (error) return (error); } error = 0; switch (sopt->sopt_name) { case IP_FW_GET: /* * pass up a copy of the current rules. Static rules * come first (the last of which has number IPFW_DEFAULT_RULE), * followed by a possibly empty list of dynamic rule. * The last dynamic rule has NULL in the "next" field. * * Note that the calculated size is used to bound the * amount of data returned to the user. The rule set may * change between calculating the size and returning the * data in which case we'll just return what fits. */ size = V_static_len; /* size of static rules */ if (V_ipfw_dyn_v) /* add size of dyn.rules */ size += (V_dyn_count * sizeof(ipfw_dyn_rule)); /* * XXX todo: if the user passes a short length just to know * how much room is needed, do not bother filling up the * buffer, just jump to the sooptcopyout. */ buf = malloc(size, M_TEMP, M_WAITOK); error = sooptcopyout(sopt, buf, ipfw_getrules(&V_layer3_chain, buf, size)); free(buf, M_TEMP); break; case IP_FW_FLUSH: /* * Normally we cannot release the lock on each iteration. * We could do it here only because we start from the head all * the times so there is no risk of missing some entries. * On the other hand, the risk is that we end up with * a very inconsistent ruleset, so better keep the lock * around the whole cycle. * * XXX this code can be improved by resetting the head of * the list to point to the default rule, and then freeing * the old list without the need for a lock. */ IPFW_WLOCK(&V_layer3_chain); V_layer3_chain.reap = NULL; free_chain(&V_layer3_chain, 0 /* keep default rule */); rule = V_layer3_chain.reap; V_layer3_chain.reap = NULL; IPFW_WUNLOCK(&V_layer3_chain); if (rule != NULL) reap_rules(rule); break; case IP_FW_ADD: rule = malloc(RULE_MAXSIZE, M_TEMP, M_WAITOK); error = sooptcopyin(sopt, rule, RULE_MAXSIZE, sizeof(struct ip_fw) ); if (error == 0) error = check_ipfw_struct(rule, sopt->sopt_valsize); if (error == 0) { error = add_rule(&V_layer3_chain, rule); size = RULESIZE(rule); if (!error && sopt->sopt_dir == SOPT_GET) error = sooptcopyout(sopt, rule, size); } free(rule, M_TEMP); break; case IP_FW_DEL: /* * IP_FW_DEL is used for deleting single rules or sets, * and (ab)used to atomically manipulate sets. Argument size * is used to distinguish between the two: * sizeof(u_int32_t) * delete single rule or set of rules, * or reassign rules (or sets) to a different set. * 2*sizeof(u_int32_t) * atomic disable/enable sets. * first u_int32_t contains sets to be disabled, * second u_int32_t contains sets to be enabled. */ error = sooptcopyin(sopt, rulenum, 2*sizeof(u_int32_t), sizeof(u_int32_t)); if (error) break; size = sopt->sopt_valsize; if (size == sizeof(u_int32_t)) /* delete or reassign */ error = del_entry(&V_layer3_chain, rulenum[0]); else if (size == 2*sizeof(u_int32_t)) /* set enable/disable */ V_set_disable = (V_set_disable | rulenum[0]) & ~rulenum[1] & ~(1<sopt_val != 0) { error = sooptcopyin(sopt, rulenum, sizeof(u_int32_t), sizeof(u_int32_t)); if (error) break; } error = zero_entry(&V_layer3_chain, rulenum[0], sopt->sopt_name == IP_FW_RESETLOG); break; case IP_FW_TABLE_ADD: { ipfw_table_entry ent; error = sooptcopyin(sopt, &ent, sizeof(ent), sizeof(ent)); if (error) break; error = add_table_entry(&V_layer3_chain, ent.tbl, ent.addr, ent.masklen, ent.value); } break; case IP_FW_TABLE_DEL: { ipfw_table_entry ent; error = sooptcopyin(sopt, &ent, sizeof(ent), sizeof(ent)); if (error) break; error = del_table_entry(&V_layer3_chain, ent.tbl, ent.addr, ent.masklen); } break; case IP_FW_TABLE_FLUSH: { u_int16_t tbl; error = sooptcopyin(sopt, &tbl, sizeof(tbl), sizeof(tbl)); if (error) break; IPFW_WLOCK(&V_layer3_chain); error = flush_table(&V_layer3_chain, tbl); IPFW_WUNLOCK(&V_layer3_chain); } break; case IP_FW_TABLE_GETSIZE: { u_int32_t tbl, cnt; if ((error = sooptcopyin(sopt, &tbl, sizeof(tbl), sizeof(tbl)))) break; IPFW_RLOCK(&V_layer3_chain); error = count_table(&V_layer3_chain, tbl, &cnt); IPFW_RUNLOCK(&V_layer3_chain); if (error) break; error = sooptcopyout(sopt, &cnt, sizeof(cnt)); } break; case IP_FW_TABLE_LIST: { ipfw_table *tbl; if (sopt->sopt_valsize < sizeof(*tbl)) { error = EINVAL; break; } size = sopt->sopt_valsize; tbl = malloc(size, M_TEMP, M_WAITOK); error = sooptcopyin(sopt, tbl, size, sizeof(*tbl)); if (error) { free(tbl, M_TEMP); break; } tbl->size = (size - sizeof(*tbl)) / sizeof(ipfw_table_entry); IPFW_RLOCK(&V_layer3_chain); error = dump_table(&V_layer3_chain, tbl); IPFW_RUNLOCK(&V_layer3_chain); if (error) { free(tbl, M_TEMP); break; } error = sooptcopyout(sopt, tbl, size); free(tbl, M_TEMP); } break; case IP_FW_NAT_CFG: if (IPFW_NAT_LOADED) error = ipfw_nat_cfg_ptr(sopt); else { printf("IP_FW_NAT_CFG: %s\n", "ipfw_nat not present, please load it"); error = EINVAL; } break; case IP_FW_NAT_DEL: if (IPFW_NAT_LOADED) error = ipfw_nat_del_ptr(sopt); else { printf("IP_FW_NAT_DEL: %s\n", "ipfw_nat not present, please load it"); error = EINVAL; } break; case IP_FW_NAT_GET_CONFIG: if (IPFW_NAT_LOADED) error = ipfw_nat_get_cfg_ptr(sopt); else { printf("IP_FW_NAT_GET_CFG: %s\n", "ipfw_nat not present, please load it"); error = EINVAL; } break; case IP_FW_NAT_GET_LOG: if (IPFW_NAT_LOADED) error = ipfw_nat_get_log_ptr(sopt); else { printf("IP_FW_NAT_GET_LOG: %s\n", "ipfw_nat not present, please load it"); error = EINVAL; } break; default: printf("ipfw: ipfw_ctl invalid option %d\n", sopt->sopt_name); error = EINVAL; } return (error); #undef RULE_MAXSIZE } /** * dummynet needs a reference to the default rule, because rules can be * deleted while packets hold a reference to them. When this happens, * dummynet changes the reference to the default rule (it could well be a * NULL pointer, but this way we do not need to check for the special * case, plus here he have info on the default behaviour). */ struct ip_fw *ip_fw_default_rule; /* * This procedure is only used to handle keepalives. It is invoked * every dyn_keepalive_period */ static void ipfw_tick(void * __unused unused) { INIT_VNET_IPFW(curvnet); struct mbuf *m0, *m, *mnext, **mtailp; int i; ipfw_dyn_rule *q; if (V_dyn_keepalive == 0 || V_ipfw_dyn_v == NULL || V_dyn_count == 0) goto done; /* * We make a chain of packets to go out here -- not deferring * until after we drop the IPFW dynamic rule lock would result * in a lock order reversal with the normal packet input -> ipfw * call stack. */ m0 = NULL; mtailp = &m0; IPFW_DYN_LOCK(); for (i = 0 ; i < V_curr_dyn_buckets ; i++) { for (q = V_ipfw_dyn_v[i] ; q ; q = q->next ) { if (q->dyn_type == O_LIMIT_PARENT) continue; if (q->id.proto != IPPROTO_TCP) continue; if ( (q->state & BOTH_SYN) != BOTH_SYN) continue; if (TIME_LEQ(time_uptime + V_dyn_keepalive_interval, q->expire)) continue; /* too early */ if (TIME_LEQ(q->expire, time_uptime)) continue; /* too late, rule expired */ *mtailp = send_pkt(NULL, &(q->id), q->ack_rev - 1, q->ack_fwd, TH_SYN); if (*mtailp != NULL) mtailp = &(*mtailp)->m_nextpkt; *mtailp = send_pkt(NULL, &(q->id), q->ack_fwd - 1, q->ack_rev, 0); if (*mtailp != NULL) mtailp = &(*mtailp)->m_nextpkt; } } IPFW_DYN_UNLOCK(); for (m = mnext = m0; m != NULL; m = mnext) { mnext = m->m_nextpkt; m->m_nextpkt = NULL; ip_output(m, NULL, NULL, 0, NULL, NULL); } done: callout_reset(&V_ipfw_timeout, V_dyn_keepalive_period * hz, ipfw_tick, NULL); } int ipfw_init(void) { INIT_VNET_IPFW(curvnet); struct ip_fw default_rule; int error; V_autoinc_step = 100; /* bounded to 1..1000 in add_rule() */ V_ipfw_dyn_v = NULL; V_dyn_buckets = 256; /* must be power of 2 */ V_curr_dyn_buckets = 256; /* must be power of 2 */ V_dyn_ack_lifetime = 300; V_dyn_syn_lifetime = 20; V_dyn_fin_lifetime = 1; V_dyn_rst_lifetime = 1; V_dyn_udp_lifetime = 10; V_dyn_short_lifetime = 5; V_dyn_keepalive_interval = 20; V_dyn_keepalive_period = 5; V_dyn_keepalive = 1; /* do send keepalives */ V_dyn_max = 4096; /* max # of dynamic rules */ V_fw_deny_unknown_exthdrs = 1; #ifdef INET6 /* Setup IPv6 fw sysctl tree. */ sysctl_ctx_init(&ip6_fw_sysctl_ctx); ip6_fw_sysctl_tree = SYSCTL_ADD_NODE(&ip6_fw_sysctl_ctx, SYSCTL_STATIC_CHILDREN(_net_inet6_ip6), OID_AUTO, "fw", CTLFLAG_RW | CTLFLAG_SECURE, 0, "Firewall"); SYSCTL_ADD_PROC(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree), OID_AUTO, "enable", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3, &V_fw6_enable, 0, ipfw_chg_hook, "I", "Enable ipfw+6"); SYSCTL_ADD_INT(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree), OID_AUTO, "deny_unknown_exthdrs", CTLFLAG_RW | CTLFLAG_SECURE, &V_fw_deny_unknown_exthdrs, 0, "Deny packets with unknown IPv6 Extension Headers"); #endif /* fill the opcode dispatching table */ fill_opcodes_table(opcode_cbs, sizeof(opcode_cbs) / sizeof(opcode_cbs[0])); V_layer3_chain.rules = NULL; IPFW_LOCK_INIT(&V_layer3_chain); ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule", sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); IPFW_DYN_LOCK_INIT(); callout_init(&V_ipfw_timeout, CALLOUT_MPSAFE); bzero(&default_rule, sizeof default_rule); default_rule.act_ofs = 0; default_rule.rulenum = IPFW_DEFAULT_RULE; default_rule.cmd_len = 1; default_rule.set = RESVD_SET; default_rule.cmd[0].len = 1; default_rule.cmd[0].opcode = default_to_accept ? O_ACCEPT : O_DENY; error = add_rule(&V_layer3_chain, &default_rule); if (error != 0) { printf("ipfw2: error %u initializing default rule " "(support disabled)\n", error); IPFW_DYN_LOCK_DESTROY(); IPFW_LOCK_DESTROY(&V_layer3_chain); uma_zdestroy(ipfw_dyn_rule_zone); return (error); } ip_fw_default_rule = V_layer3_chain.rules; printf("ipfw2 " #ifdef INET6 "(+ipv6) " #endif "initialized, divert %s, nat %s, " "rule-based forwarding " #ifdef IPFIREWALL_FORWARD "enabled, " #else "disabled, " #endif "default to %s, logging ", #ifdef IPDIVERT "enabled", #else "loadable", #endif #ifdef IPFIREWALL_NAT "enabled", #else "loadable", #endif default_rule.cmd[0].opcode == O_ACCEPT ? "accept" : "deny"); #ifdef IPFIREWALL_VERBOSE V_fw_verbose = 1; #endif #ifdef IPFIREWALL_VERBOSE_LIMIT V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT; #endif if (V_fw_verbose == 0) printf("disabled\n"); else if (V_verbose_limit == 0) printf("unlimited\n"); else printf("limited to %d packets/entry by default\n", V_verbose_limit); error = init_tables(&V_layer3_chain); if (error) { IPFW_DYN_LOCK_DESTROY(); IPFW_LOCK_DESTROY(&V_layer3_chain); uma_zdestroy(ipfw_dyn_rule_zone); return (error); } ip_fw_ctl_ptr = ipfw_ctl; ip_fw_chk_ptr = ipfw_chk; callout_reset(&V_ipfw_timeout, hz, ipfw_tick, NULL); LIST_INIT(&V_layer3_chain.nat); return (0); } void ipfw_destroy(void) { INIT_VNET_IPFW(curvnet); struct ip_fw *reap; ip_fw_chk_ptr = NULL; ip_fw_ctl_ptr = NULL; callout_drain(&V_ipfw_timeout); IPFW_WLOCK(&V_layer3_chain); flush_tables(&V_layer3_chain); V_layer3_chain.reap = NULL; free_chain(&V_layer3_chain, 1 /* kill default rule */); reap = V_layer3_chain.reap, V_layer3_chain.reap = NULL; IPFW_WUNLOCK(&V_layer3_chain); if (reap != NULL) reap_rules(reap); IPFW_DYN_LOCK_DESTROY(); uma_zdestroy(ipfw_dyn_rule_zone); if (V_ipfw_dyn_v != NULL) free(V_ipfw_dyn_v, M_IPFW); IPFW_LOCK_DESTROY(&V_layer3_chain); #ifdef INET6 /* Free IPv6 fw sysctl tree. */ sysctl_ctx_free(&ip6_fw_sysctl_ctx); #endif printf("IP firewall unloaded\n"); }